• 首页
  • 工种与考证
  • 全部课程
  • 分销联盟
  • 培训认证
  • XR浏览器下载
  • 文章资讯
  • 学习中心 APP下载
    扫码下载-100VRAPP
    扫码下载-技能培训APP
    扫码下载-互动科普APP
    建议意见 官方客服

    官方客服

    您可以与在线客服进行沟通或者拨打客服热线获得帮助

    电话:0592-2529323    0592-5551325

    邮箱:help@onesoft.com.cn

    在线咨询:

    当前位置:首页 > 文章资讯 > 汽修专业 > 汽车动力变革中的内燃机发展趋势

    汽车动力变革中的内燃机发展趋势

    发表于:2019-08-26
    阅读:5771
    评论:0

     来源:同济智能汽车研究所 混合动力研究组:韩志玉教授、吴振阔博士、高晓杰博士

     

    编者按 未来30年汽车动力将如何变革?此变革中内燃机又将何去何从?本文在总结了过去30年汽油机技术的进步和近20年汽车动力的变革后,或许能为我们部分廓清上述问题。 文章结论性观点如下:(1)过去30年,轻型汽车汽油机技术取得长足进步——汽油机产品在动力性、燃油经济性和排放控制方面获得全方位提高。其中,动力性提高67%以上,热效率提高8个百分点,提高幅度为20%以上。中国轻型汽车排放标准从国1到国6,有害排放物降低80%以上。(2)未来30年内燃机仍将起到关键作用,至少60%以上轻型汽车需要一个内燃机。(3)内燃机在轻型汽车动力中的地位将逐渐发生变化。一方面,从内燃机单独驱动逐渐演变为内燃机和电机共同驱动,其作用变化类似于从“独唱”变为“二重唱”。另一方面,内燃机在整车性能上所起到的关键作用将下降,从一个“核心”部件变成“关键”部件,成为一个通用产品,商业模式可能发生变化。(4)结合混合动力系统应用可充分利用发动机的高效率区域。混动系统,特别是增程混合动力系统,要求内燃机运行范围变窄,有必要开发混合动力专用发动机,进一步提高其热效率、简化机构、降低成本。(5)未来汽油机热效率(特别是实际运行时的热效率)将大幅度提高,通过多种技术手段的应用,商业化产品有望实现45%的热效率。(6)汽车燃用天然气可大幅度降低CO2排放。车用动力将根据地域形成“油、电、气”的多元格局。

    摘要:总结了过去30年轻型车用汽油机技术与产品的进步以及近20年汽车动力多元化(包括混合动力、纯电动、燃料电池等)的变革趋势,展望了内燃机在此变革中的发展趋势。在过去30年,汽油机技术取得了长足的进步;汽油机产品在动力性、燃油经济性、排放控制方面获得了全方位的大幅度提高。对动力技术多元化的分析指出内燃机在汽车动力中仍将起到关键作用,未来30年里至少60%以上的轻型汽车仍然需要使用内燃机。但是,内燃机的地位将逐步发生变化。汽车动力将从内燃机单独驱动的“独唱”逐渐演变为内燃机和电机共同驱动的“二重唱”。轻型车用汽油发动机未来发展的重点包括开发混合动力专用发动机、提高发动机热效率和应用低碳燃料(如天然气)等。最后,探讨了提高汽油机热效率至45%的技术手段。

    关键词 : 汽车动力;内燃机;汽油机;热效率;电动化

    前言

    汽油机是轻型汽车(包括乘用车和轻型商用车)的主要动力。在过去的30年里,世界发达国家和中国的汽车发动机技术和产品都取得了长足的进步。笔者结合亲身经历,讨论近30年国内外车用汽油机技术和产品的进步,总结近20年汽车动力多元化的发展趋势,并展望未来在轻型汽车动力变革中的内燃机发展。由于柴油机制造成本高,且需要复杂的后处理系统来满足日益严格的排放标准,因此柴油机在中国轻型车上应用较少,欧洲国家的应用也会逐步减少,所以本文集中在汽油机方面的讨论。 

    1.近30年车用汽油机技术和产品的进步

    为了理清汽油机技术发展的基本线路,有必要对发动机的工作过程做一个简要概述。图1给出了发动机基本工作过程的示意图。

     

    图1 发动机工作过程示意图

    进气系统及燃油供给系统将空气和燃料分别引入到发动机内并形成空气–燃料混合气,混合气在发动机燃烧室内被点燃并发生燃烧,带动曲轴旋转对外输出动力。随着燃烧产生的产物有H2O、CO2以及空气中没有参与反应的N2,同时也伴有少量CO、HC、NOx和颗粒物等有害排放物。因此,对发动机工作过程的改善一般应遵循如下原则:

    1) 最大程度地提高动力输出以及其与燃料输入的比值,即提高动力性及燃油经济性;

    2) 依法合规降低有害排放物;

    3) 降低CO2排放(碳排放)。

    从图1可以看出,理论上要改善发动机就要改善燃料的供给、空气进气、燃烧、有害排放物的生成及其后处理。在过去的30年里,发动机技术正是在上述这几个方面取得了很大进步,从而带来了发动机性能的显著提高,即上述第1和2项取得了进步。需要指出的是,目前对于CO2的降低,即上述第3项,主要是通过降低油耗来实现,基本没有出台专门降低CO2排放的措施和法规。本文在后面的讨论中将按燃料供给、空气进气、燃烧和有害排放物控制的线条展开讨论。

    为深刻理解发动机技术发展背后的原理支撑,先对发动机原理进行简要分析。以发动机平均有效压力和热效率为主线对影响发动机动力性及经济性的主要因素进行分析。

    发动机的缸内平均有效压力与其输出扭矩成正比,提高平均有效压力将提高发动机的扭矩输出。平均有效压力为[1,2]

    其中:ηV为充气效率,ηC为燃烧效率,ηi为指示热效率,ηm为机械效率,αAF为空燃比,Pa、Ta、R分别为参考状态下的气体压力、温度及气体常数,QLHV为燃料低热值。

    为提高发动机的扭矩输出,要考虑式(1)中各影响因素。采用较大的空燃比(大于当量空燃比),即稀薄燃烧,有利于提高指示热效率(即降低燃料耗率),但将直接影响发动机的输出扭矩。考虑到这个因素和排放控制,汽油机基本工作在当量空燃比附近,其变化范围较小。因此提高汽油机的动力输出,可从提高充气效率、燃烧效率、指示热效率、机械效率入手。其中,提高充气效率的效果尤为显著。

    提高汽油机的热效率可以从理论热效率入手。汽油机理想循环为奥拓循环(Otto cycle),其热效率为[1,2]:

    其中:ηi为指示热效率,ε为压缩比,n为过程指数。增大压缩比或过程指数均可以提高热效率。汽油机压缩比提高到一定程度将受到爆震燃烧的限制,采用可变压缩比技术是提高发动机热效率同时避免爆震的最佳技术方案之一。

    1.1 汽油机技术的进步

    由于汽油机功率密度较高、振动噪声小、成本较低且污染物控制比柴油机容易,因此广泛应用在轻型车上。汽油机一般采用火花塞点燃汽油与空气的预混合气,继而产生火焰传播,燃烧做功。汽油机混合气的制备对汽油机的性能影响很大,因此汽油机技术的发展离不开与混合气制备密切相关的进气和燃油喷射技术的发展。

    1.1.1  进气技术的发展

    从式(1)可知,为提高发动机动力性,可以通过提高发动机的充气效率来实现。提高汽油机充气效率的进气技术包括:采用4气门、可变进气管长度、可变进气正时(variable valve timing, VVT)、可变进气升程(variable valve lift, VVL)以及废气涡轮增压等技术,其中涡轮增压技术是当前提升汽油机动力性的主要手段。

    涡轮增压技术可以利用废气能量驱动涡轮带动压气机工作,提升进气压力,提高发动机的充气量,继而大幅提升汽油机的动力性[3-4]。由于动力性的提升,汽车可在保持与原有自然吸气发动机相同动力性的情况下,采用较小排量的涡轮增压发动机,利于发动机小型化和轻量化。小型化可以有效降低燃油消耗量及有害物的排放量,做到节能、减排。因此,增压小型化也成为现今车用汽油机的主流趋势。但是,采用涡轮增压技术也存在一些问题[5]。由于进气压力和温度的增加,会导致压缩终了的缸内温度升高和压力增加,以及发动机热负荷增加,使发动机爆震倾向增大。一般可通过进气中冷、提高燃油辛烷值、降低压缩比、推迟点火角、加浓混合气、废气再循环(exhaust gas recirculation, EGR)等技术手段来抑制爆震。

    1.1.2   燃油喷射技术的发展

    早期汽油机通过化油器实现汽油供给, 到20世纪80年代初期随着电子控制技术的兴起,开始普遍采用汽油气道喷射技术(port fuel injection, PFI),从单点喷射到各缸多点喷射技术。到20世纪90年代中期,缸内直接喷射技术(gasoline direct injection,GDI)得到了商业化应用。尽管几十年前人们几次尝试推出汽油直喷技术的产品(例如福特汽车公司的PROCO),直到1996年日本三菱汽车公司率先在市场上推出直喷分层燃烧的汽油机汽车产品,才开启了现代汽油直喷喷射技术的时代,经过10多年的发展,废气涡轮增压当量均质混合气直喷汽油机技术在国内外基本普及。

    为满足日益严格的排放标准,人们一直在改善燃油雾化和喷射控制,缸内直喷技术经历了从伞喷到多孔喷油器,喷射压力从10 MPa到35 MPa,每循环单次喷射到多次喷射,喷雾油粒平均尺寸从25 μm到10 μm的进步。随着燃油喷射控制技术的进步,喷油离燃烧室越来越近,使得喷油量、喷射时间和喷射策略的控制也越来越精确,有利于对空燃比精确控制,进而实现对燃烧的精确控制。而且,有利于对各缸空燃比的一致性控制,降低了各缸不均匀性。

    1.1.3   整机技术的发展

    随着进气和燃油喷射技术的发展,汽油机整机技术也相应地得到提高。以燃油喷射技术为特征的整机技术经历了从自然吸气PFI汽油机、废气涡轮增压PFI汽油机到自然吸气GDI汽油机,再到目前主流的废气涡轮增压GDI汽油机。以上市产品为例,表1总结对比了国内外整机技术的发展历程。1967年德国大众汽车公司已有PFI汽油机上市;宝马汽车在1973年推出了2.0 L增压PFI汽油机。1996年日本三菱公司首先推出了现代GDI汽油机,应用在Galant车型。该款发动机排量为1.8 L,采用分层稀薄燃烧技术。2000年德国大众汽车公司推出了增压直喷汽油机,应用在Lupo车型。该款发动机排量为1.4 L,采用当量燃烧技术。

    表1  国内外整机技术发展历程

    反观中国自主品牌市场,在2000年左右,汽车公司,包括长安、奇瑞、昌河、华晨金杯和夏利等,应用PFI发动机的汽车陆续批量上市。在2009年,奇瑞汽车推出瑞虎5车型,应用2.0 L增压PFI汽油机;在2010年奇瑞汽车又推出瑞麒车型,搭载2.0 L直喷增压汽油机。从表1可以看到中国汽油机整机技术与发达国家相比比较滞后,这与中国汽车工业发展相对滞后直接相关。在增压直喷汽油机技术应用的时间上,中国比国外滞后10年左右,但目前已经与国外技术总体上基本拉平。

    在整机技术发展的过程中,除提高指示热效率的各种技术手段(常用的包括VVT、VVL、EGR、Atkinson/Miller循环,等)以外,废气涡轮增压、发动机结构设计、轻量化材料、低摩擦材料、高效率可变附件等技术也是层出不穷,方兴未艾。在这里就不再赘述。

    1.1.4   研发手段的发展

    发动机技术的进步来源于研发结果。在过去30年里发动机的研究手段也取得了突破性进展,主要的进步集中体现在发动机缸内现象的可视化。各种试验及仿真技术的发展使得发动机缸内现象从原来的看不见、摸不着逐渐发展到可见、可测。通过采用光学发动机结合激光诊断技术以及计算流体力学(computational fluid dynamics, CFD)仿真技术,使得缸内过程可视化和可预测化成为现实。缸内过程的可视化和CFD的应用为深入探究直喷汽油机缸内混合气形成、燃烧及排放生成等物理化学现象的本质及燃烧系统的设计优化提供了可能性及有效性[6],如Han等[7]结合光学发动机试验,通过CFD仿真预测了活塞湿壁现象,并发现了活塞表面上残存液态燃油量与发动机碳烟量的定性关系。从图2可以看到,CFD预测出的活塞表面上液态燃油的位置与光学发动机活塞积碳位置是一致的。
     

     

    (a)  CFD预测结果

     

    (b)  光学发动机结果

    图2 CFD预测的活塞表面上的液态燃油与光学发动机上活塞积碳对比[7]
    基于对发动机缸内多种物理现象可视化研究的需求,研究者们开发了各式各样的激光诊断方法。图3给出了直喷汽油机在一个工作循环中涉及的喷雾、蒸发、气流运动、燃烧及排放物生成等过程以及对应的诊断方法[8-9]。对喷雾形态的测量主要采用喷雾成像的方法,利用光源将喷雾照亮,并通过摄像系统来采集图像,最后对喷雾贯穿距、锥角进行分析。依据使用光源的不同,可分为白光灯摄影、背光摄影及片激光米氏散射摄影等。对喷雾粒径的测量主要采用相位多普勒法(phase‎ doppl‎er parti‎cle analy‎zer, PDPA)和片激光粒径诊断法(laser sheet dropsizing,LSD)。对喷雾的蒸汽相浓度进行测量常用的手段有激光诱导荧光法、双相激光诱导荧光法、红外吸收散射法等。对缸内流场测量的方法有激光多普勒测速(laser doppler velocimetry, LDV)、粒子图像测速(particle image velocimetry,PIV)和分子示踪技术(molecular tagging velocimetry, MTV)等。对缸内燃烧过程的测量可采用直接摄影来观察燃烧形态,或对燃烧过程中的OH自由基等组分进行测量来获取燃烧发生区域。最后,还可以通过双色法或者激光诱导炽热发光法(laser induced incandescence, LII)对缸内碳烟生成进行测量[9]。
    图3 激光诊断技术在直喷汽油机中应用[9]

    发动机的CFD仿真技术在过去30年里从动态网格处理、物理模型构建、计算方法、计算速度和精度、后处理技术、软件界面等各方面都取得了很大的发展。早期的网格划分工作占用整个发动机CFD仿真的大半时间,并且难以较精确地处理气阀运动等复杂动网格。目前已发展出网格自动生成技术及自适应加密技术[10],CFD前处理时间大大缩减,因而可缩短工程优化的迭代时间。同时从原来使用非常粗的网格(2-3 mm)到现如今的精细网格(0.1mm),提高了计算精度。对发动机物理过程的仿真也从简单的气流计算发展到现今的从气流运动、喷雾、混合、燃烧及排放物生成等多物理过程的仿真,且在模型构建及预测精度等方面取得了较大的进步。对缸内湍流流动模拟,研究者不仅对原有雷诺时均(Reynolds-averaged Navier-Stokes, RANS)模型进行了较大改善,引入基于快速畸变理论的RNG k-e模型[11],而且也发展了精度较高的基于空间平均的大涡模拟(large eddy simulation, LES)[12]。近些年来,得益于计算机计算能力的大幅提升, 将LES应用到发动机CFD模拟的案例越来越多。有了LES的帮助,使得对缸内现象的预测更为准确,更接近真实。同时,也可对发动机循环波动[13]及一些偶发现象(如爆震[14])有较好的预测。关于燃油喷雾模型的进展,不但是在喷雾破碎、蒸发、碰壁等子模型的构建上取得了较大进展,而且在建模方法也有了一些新思路和方法,获得了更好的预测结果[15]。

    燃烧模拟方面,从原本预测性较弱的零维、准维燃烧模型逐步发展到现在预测性较强的多维燃烧模型,如特征时间模型(characteristic time combustion, CTC)、涡团耗散模型(eddy dissipation concept, EDC)、G方程模型、直接耦合化学反应动力学模型、概率密度(probability density function, PDF)模型等,可以实现对传统汽油机、柴油机以及新型燃烧模式发动机燃烧过程的较为准确的模拟[12,16]。近年来在燃烧化学反应耦合方面已从使用单步反应或少量骨架反应发展到采用较详细的化学反应机理,甚至全机理计算[16-17]。通过耦合详细化学反应机理,可以对燃烧及污染物生成如HC、CO、NOx等有较好的预测,但是目前对颗粒物的预测精度有限[16,18]。

    1.2  汽油机产品性能的进步

    1.2.1 动力性

    为展示发动机在动力性上的进步,本文选取并对比了历年美国沃德十佳发动机[19](自1995年开始)及中国心十佳发动机[20](自2006年开始)获奖名单中4缸汽油机产品的升功率(WL)及升扭矩(TL)指标,如图4所示。可以看出: 采用增压技术可显著提高发动机动力性,且随着时间发展,增压发动机的动力性指标也取得了很大提升。国外发动机采用的增压技术包括涡轮增压、机械增压以及涡轮与机械双增压。以采用涡轮与机械双增压发动机的沃尔沃S60 Polestar汽车为例,其升功率和升扭矩已分别达到135 kW/L和235 Nm/L。从总体上讲,在过去20年里,国外增压汽油机的平均升功率从60 kW/L提高到100 kW/L以上,提高了67%以上,同时升扭矩从120 Nm/L提高到200 Nm/L,进步十分显著。对于涡轮增压发动机来说,中国自主品牌发动机的动力性大概与国外发动机10年前的水平相当,但是在过去十几年里也取得了明显进步,平均升功率从60 kW/L提高到了88 kW/L左右,提高了约47%。对于自然吸气发动机的动力性,多年来并未有显著提高,国内外发动机的动力性基本相当,升功率保持在50⁓55 kW/L。还需注意的是,由于车用动力的多元化发展,国外逐渐出现混动专用发动机,且以自然吸气为主。
    (a)国外发动机升功率
     (b)国内发动机升功率
    (c)国外发动机升扭矩
    (d)国内发动机升扭矩
    图4 汽油机动力性的演变

    1.2.2  发动机热效率及燃油经济性

    在过去30年里,汽油机热效率也有较为显著的提高。图5给出了日本丰田汽车的汽油机热效率变化历史[21], 该图也基本反映了国外汽车工业界的发展轨迹。从图5可以看出,过去30年里汽油机热效率从33%提高到了39%,目前有报道丰田公司量产的汽油机最高热效率为41%[22-23],热效率提高了8个百分点,相对值提高幅度为24.2%。

     
      图5 丰田汽车汽油机热效率变化历史[21]
    自2005年开始,中国先后实施/制定了4个阶段的乘用车燃油消耗量限值法规,用于推动汽车节能技术的革新。图6给出了中国轻型车在4个阶段不同整车整备质量对应的燃油消耗量限值。通过燃油法规的实施,促使乘用车企业对其所销售车辆的平均油耗不断降低。到2020年,乘用车企业平均燃油消耗量4阶段目标值需降低至5 L/(100 km) [24-25]。
    图6 中国轻型车燃油消耗量限值
    为便于评价中国轻型车汽油机燃油经济性的进步,图7对比了中国国家工信部公布的2012⁓2017年国产乘用车当年新车公告的平均燃油消耗量水平。从总体趋势可以看到,中国新车的平均燃油消耗量逐年下降,2017年已降至6 L/(100km),比2012年降低18.9%,由法规驱动的技术进步十分明显。
    图7 国产乘用车平均燃油消耗量

    1.2.3  有害排放物

    为展示轻型车用汽油机在排放控制方面的进步,本文对比了中国各阶段排放法规[26-27]。其基本想法是在用及在售车辆的排放水平均满足对应阶段的排放法规时,对比各阶段排放法规即可从总体上看出中国轻型车在排放控制方面的进步。图8给出了中国各阶段轻型车排放法规中规定的污染物限值,其中以可通过还原反应处理的污染物NOx作为横轴(e[NOx]),以可通过氧化反应处理的HC和CO排放物之和作为纵轴(e[THC+CO])。由于国1和国2阶段法规中对排放物各项规定稍有差异,选取NOx和HC排放物之和为横轴,NOx、HC和CO排放物之和为其纵轴,并在图中标注其相应数值。从数值点与横纵轴包络面积的变化即可看出各阶段排放的降低水平。从图中可以看到,自2000年国1法规开始实施到2020年即将实施的国6,有害排放物限值有大幅度的降低,降低幅度在80%以上,这表明中国轻型汽油车在排放控制方面的巨大进步。
    图8 中国轻型车排放法规限值

    1.2.4   CO2排放

    由于CO2气体的温室效应会造成全球气候变暖,欧盟、美国、日本等国均制定了CO2限值来限制汽车CO2排放。中国也根据油耗法规折算出CO2限值。表2给出了不同阶段各国CO2排放限值。从表2看出,类似于其他汽车强国,中国制定的CO2限值也越来越严格,且给予实现目标的时间越来越短。但是目前中国对于CO2排放的降低主要是通过降低燃油消耗量来实现,而专门针对降低CO2的技术并没有得到足够的重视。例如发动机燃用低碳燃料可显著降低CO2排放,但是对于低碳燃料在发动机中的应用还未引起广泛关注。

     
    表2  各国CO2排放限值
    2.近20年汽车动力多元化的变革发展

    2.1 汽车动力多元化发展现状

    自20世纪末汽车动力开始呈现出多元化发展的趋势。汽车从单一内燃机的燃油车(internal combustion engine vehicle,ICEV)逐渐向油电混合动力汽车 (hybrid electric vehicle, HEV)、电动汽车 [指纯电动汽车(battery electric vehicle ,BEV)和插电式混合动力汽车(plug in hybrid electric vehicle)]和燃料电池汽车(fuel cell vehicles , FCV)等方向发展。这些多元化动力是汽车动力向电动化发展的不同形式,几乎都需要电机及电池。以商业化产品为例,丰田公司于1997年推出油电混合动力车型Prius,上市后广受好评;目前丰田在全球销售的混合动力汽车已经超过1000万辆;2009年丰田发布第3代Prius,据工信部公告,油耗为4.3 L/(100km)。纯电动汽车以特斯拉为例,2008年特斯拉推出纯电动车型Roadster,2017年特斯拉交付了10.3万辆纯电动汽车。另外,2016年丰田汽车推出了全球首款批量商业化的氢燃料电池乘用车Mirai,该车加注一次氢气可以续航650 km,达到了和汽油车相同的续航里程和燃料加注效率。与此同时,汽车公司也一直致力于研发并生产更加节能的燃油汽车。马自达汽车坚持改进汽油机热效率,采用13:1的高压缩比等措施改善燃烧,在传统动力整车燃油经济性上取得了领先的优势。据工信部数据,2015年马自达Atenza的整车油耗为6.4 L/(100km),比2016年国家第3阶段油耗限值低了近18%,大大领先于其他同类产品。上面的这些例子明确地表明了汽车动力多元化的技术发展趋势和商业实践,未来几种形式将共存发展。

    2.2  汽车动力发展预测

    如上节所述,汽车动力在20世纪末开始出现多元化且成功商业化。但是目前非内燃机驱动的汽车所占市场份额仍然很低,在未来仍然需要较长的发展时间。很多机构和研究者预测了未来不同汽车动力形式的发展趋势。从全球范围来讲,根据国际能源署最新报告预测[28],2020和2030年全球轻型电动汽车(含BEV和PHEV)的销量分别为390万辆和2100万辆,各占当年总销量的3%和13%。也就是说,到2030年至少还有87%的轻型汽车需要单一内燃机驱动。

    图9分别给出了未来美国市场[29]及中国市场[30]不同动力形式汽车的市场份额预测。从图9a可以看出, 2015年美国市场销售的纯内燃机汽车占比92%,预计在2030年为80%,而在2050年为60%。考虑到混合动力仍然需要内燃机,因此在2030和2050年美国用内燃机的轻型汽车分别为96%和90%。图9b是“中国节能与新能源汽车技术路线图”[30]中对未来汽车动力的预测。从中可以看到,在2030年,中国纯内燃机汽车约占市场份额的35%,混合动力汽车占25%,电动汽车(含BEV和PHEV)占40%。燃料电池累计销量为100万辆。如果假设电动汽车中间有一半应用插电式混合动力,可以得出2030年中国汽车销量中仍然有60% ⁓ 80%的份额需要内燃机。

                 
           (a)美国市场[29]
    (b)中国市场[30] 
    图9 未来美国市场及中国市场不同动力形式汽车的市场份额预测[29-30]
    以上预测表明,在未来30年内燃机在汽车动力中仍然起到关键作用,全球范围内至少60%以上的轻型汽车仍将装有一个内燃机,内燃机生命力依旧旺盛。但随着汽车动力电动化的发展,未来内燃机的支配地位将逐步弱化。汽车由单一内燃机驱动变为由内燃机和电机(一个或者几个)驱动。换言之,汽车动力由内燃机的“独唱”变为内燃机和电机的“二重唱”。由此可以推断,内燃机在整车性能上所起到的关键作用将下降,将从一个“核心”部件变成“关键”部件,逐步成为一个通用产品,商业模式因此也可能发生深刻的变化。

    2.3  汽车动力电动化的痛点

    汽车动力在向电动化发展的过程中遇到了以下主要问题:

    1) 电池能量密度低。表3给出了不同电池与几种典型液体燃料能量密度值的对比[31]。从表3中可以看出,电池的能量密度与传统液体燃料相差在1-2个数量级。这说明与传统燃油相比,想要依靠动力电池产生出相同的能量,所需动力电池的重量远远超出燃油质量和体积,这将造成整车质量的显著增加,使得能耗增加。但是,为了维持较长的续航里程来解决用户里程焦虑的问题,大容量的电池在当前的技术条件下是必需的。

    表3  电池与典型液体燃料的能量密度对比

    图10给出了“中国节能与技术路线图”[30]中对电动汽车电池系统能量密度及成本的预测。从图中可以看到,随着技术的进步,未来的电池比能量有望进一步提高,且同时可以保证电池成本持续降低。但是预测在2030年,即使电池能量密度能够获得翻倍的提升,其比能量也仅为0.35 kWh/kg,和传统燃料的能量密度相差仍然甚远。

    图10 电池能量密度预测
    2)车主总成本高。车主总成本(total cost of ownership)包括购置成本和使用成本,其中使用成本包含能源使用费用、车辆维修保养、保险和交税等。美国John W. Brennan等[32]对比了中小型纯内燃机汽车和纯电动汽车在20年使用期间车主的总成本,如图11所示。可以看出,无论是小型还是中型汽车,纯电动汽车的车主成本均高于纯内燃机汽车,小型和中型纯电动汽车比纯内燃机汽车的车主成本分别高44%和60%。其中,纯电动汽车购置成本明显高于纯内燃机汽车。对于小型汽车,纯电动的使用成本略高于纯内燃机汽车,而对于中型汽车,纯电动的使用成本显著高于纯内燃机汽车。
    图11 内燃机汽车与电动汽车车主总成本对比[32]

    3)充电难。首先,由于目前的充电基础设施还不完善,还需要专用充电车位,造成用户充电困难。即使已有公共充电桩,但由于数量较少,距离用户较远,充电成本高,也给用户带来不便;同时,建设充电桩也存在费用高,申请周期长,增容困难等实际问题。此外,由于目前充电及电池技术的限制,充电时间较长,用户在缺电后不能快速获得补充而造成不悦使用体验。

    综上所述,随着混合动力以及纯电动汽车的发展,内燃机的地位逐渐变化,但是在未来30年,内燃机在汽车中仍然起到关键作用。在当前其他动力源汽车仍存在如电池能量密度低、成本高及充电难等问题的情况下,对内燃机的研究仍然不能松懈。未来内燃机需要在汽车动力变革中进一步发展,挖掘更大潜力,尤其在如何降低油耗和应用低碳燃料(例如天然气、甲醇等)方面需要深入研究。

    3.变革中的内燃机发展

    3.1  混动系统应用

    随着汽车动力的电动化发展,内燃机在未来很长一段时间需要与电机共存,形成混合动力系统作为汽车动力源。在混动系统中可以应用现有发动机资源,使用发动机的高效率工作区域,从而避开长时间在低效率区域工作,做到扬长避短。图12给出了内燃机在混动系统中应用的两个例子。图12a为传统燃油车发动机(较大排量)在混动系统中的应用示意。可以看到,发动机在传统车中的常用使用工况为中低速、低负荷区域,而在这些区域发动机的热效率较低,燃油经济性差。发动机在混动系统中使用后,通过电机的辅助将发动机工况调整至中高负荷,使用其高效率区域而降低油耗。另外一种使用方案为采用成本较低的小排量发动机,这样在相同负荷下,发动机在更高的效率区工作,如图12b所示。这样可以充分利用现有发动机资源,改善整车燃油经济性。上述2个例子展示了在混动系统中利用发动机的2种方案,而方案的选择将取决于不同的设计理念。但是仅利用传统发动机的资源,不足以充分发挥混动系统的优势,需要有针对性的研发混动专用发动机。

     

     

    (a) 大排量发动机 (b)小排量发动机
    图12 发动机在混动系统中的应用示例

    3.2  增程混动专用发动机的特征分析

    混合动力发动机的工况范围较传统发动机有较大的不用,其运行和设计特征应该有其特点。2016年帅石金等对轻型车用混动发动机进行了综述分析[33],他们指出目前混动发动机主要有两条技术路线,即,以日本车企主导的自然吸气高膨胀比汽油机,以及以德国车企主导的直喷增压汽油机。中国对混动发动机本身的研究较少,多是在传统发动机基础上进行重新标定和选配,并没有针对性的正向开发混动专用发动机,无法充分发挥混动系统的节油能力。

    由于新能源汽车补贴退坡及纯电动汽车成本高、续航短、在严寒地区性能显著下降等原因,具有增程功能的混动系统将显现出市场竞争力,可能成为未来典型的混动路线。本文在此对增程混动系统的发动机特征进行分析。增程混动系统一般指串联构型的混动系统,也称为增程器。增程器发动机不参与驱动车辆,仅用来带动发电机发电以增加纯电续驶里程。在电池电量不足情况,维持汽车巡航所需的驱动功率一般较低。以一个整备质量为1.6 t重的三厢汽车为例,维持120km/h续航行驶所需的增程器功率约为30kW。因此,增程器可以选用较小排量的发动机。

    此外,本田的串并联构型混动系统(iMMD系统)[34]和同济大学的增程式混合动力(TJEHT)系统[35]都具有双电机,且其发电机和发动机可与车轮完全解耦,因此也具备增程功能,在此也称为增程混动系统。相比于传统燃油车,增程混动系统对发动机的动力性要求降低,对其运行工况(转速、负荷)有较大选择空间。

    增程器专用发动机最主要的特点是发动机热效率高、结构紧凑、成本低。一般通过提高压缩比并采用Atkinson循环来实现发动机高效率工作。为进一步提高热效率,还会采用冷却EGR、低摩擦技术等手段。为简化结构并降低成本,可考虑采用每缸2个气门的气缸盖设计和气道喷射技术。为了满足结构紧凑的需要,可以考虑采用三缸或者二缸发动机设计[36]。另外,由于二冲程发动机升功率大,也可能成为设计选项[37]。

    3.3  提高发动机热效率

    混动系统对发动机的热效率提出了更高的要求,因此需要研究如何进一步提高发动机热效率。目前商业化的高水平车用汽油机的最高热效率约为37%,各大主流汽车厂商仍然致力于进一步提高发动机热效率的研究。2017年,日本丰田公司推出了基于全新架构的发动机“Dynamic Force Engine”(动力发动机)。该款发动机排量为2.5 L,热效率为40%,其混动版本的热效率更是达到41%,是全世界目前量产汽油机中的最高值[22-23]。此外,丰田公司已经在实验室内探索评估了各种改善热效率的方法,并已验证了汽油机获得高于45.9%热效率的可能性[21]。这表明产品发动机有望在不远的将来达到45%的热效率。如果实现这一目标,将比目前汽油机的热效率相对提高24%,若应用到整个汽车行业,将具有显著的降油耗前景。

    在学术研究领域里,研究人员也在探索提高汽油机热效率到50%的新概念。比如,日本在2014年启动了“创新燃烧技术”项目,旨在进一步提高发动机热效率。由日本庆应大学领导的汽油机燃烧团队,通过超稀燃烧(过量空气系数为2)等一系列技术手段,已将发动机有效热效率提升至51.5%[38-39],证明了进一步提高汽油机热效率的可能性。

    一般来讲发动机消耗燃油产生的能量主要有如下5部分组成:有效功、传热损失、排气损失、机械损失及燃烧损失。改善发动机的热效率,即在不改变能量输入的情况下,尽量提高有效功的输出,减少其他部分的能量比例。几乎所有提高热效率的技术手段都是秉承以上的准则。表4给出了笔者在早期研究中总结的提高汽油机热效率的一些技术手段和收益[40]。可以看到,各个技术手段的应用都能获得较为可观的热效率改善程度。由于传统车型对发动机的高要求,阻碍了部分技术手段的应用。混动系统给予发动机更大的优化空间,这些技术手段的应用或许不再受限。  
    表4  提高热效率的技术手段及收益[40]

     

    *包括降低泵气和摩擦损失的收益。

    结合文献研究,总结汽油机有效热效率提高到45%的主要技术手段有[1-2,21-23,40-56]:

    1)长冲程设计。增加发动机冲程不仅可以减少发动机传热损失,还可提高缸内气体流动强度, 改善燃烧。图13和图14分别给出了丰田公司研究得出的发动机冲程、缸径与燃烧室面容比和缸内湍流强度的关系[21]。可以看到随着冲程的增加,面容比降低,利于传热损失的降低。同时从图14可以看到,缸内湍流强度随冲程的增长而增强,继而可提高燃烧速度。混合动力用发动机最高转速较低(不超过4 000 r/min),可以突破传统发动机(转速达到6 000 r/min)长冲程设计受活塞平均速度的限制,充分利用长冲程设计带来的益处。

    2)高压缩比(>13)。通过提高压缩比来提高发动机的热效率是人们长期追求的目标。在实践中为避免压缩比过高导致爆震,可以采用Atkinson循环,在保持较低有效压缩比的情况下,实现高的膨胀比。另外的解决方案是采用可变压缩比技术,在不同工况采用不同的压缩比,避免在大负荷时产生爆震燃烧。

     

    图13 发动机冲程、缸径与燃烧室面容比的关系[21]

     

    图14 发动机冲程、缸径与缸内湍流强度的关系[21]

     

    3)稀薄燃烧技术。稀薄燃烧可提高发动机工作过程的过程指数(减少传热损失)和部分负荷的泵气损失,继而提高热效率。

    4)冷却废气再循环(EGR)。冷却EGR可以降低部分负荷的泵气损失,同时EGR可以降低燃烧温度,继而降低传热损失,并可降低NOx排放。但是需要注意的是,随着引入缸内EGR比例的增加,燃烧速度降低,燃烧持续期增长,可能造成燃烧不稳定或失火,不利于热效率提高。为改善这一现象,可以通过提高缸内湍流强度来提高燃烧速度。通过改进气道设计或燃烧室设计等措施可改善缸内气流运动,提高缸内湍流强度,继而改善燃烧速度,同时扩展EGR比例界限,进一步改善热效率。

    5)降低传热损失。发动机可通过引入EGR、采用均质充量压燃(homogeneous charge compression ignition,HCCI)等技术组织低温燃烧降低传热损失,或者采用活塞隔热涂层降低传热损失。还可通过改善发动机热管理系统降低传热损失,例如采用电子节温器较为灵活地控制冷却液大小循环的开启,将发动机保持在较适合的水温下工作,降低传热损失。

    6)提高机械效率。采用轻量化材料、低摩擦材料和技术,以及高效率附件(附件电子化)降低机械损失。

    7)燃油与发动机联合优化。通过对燃油与发动机的联合匹配和优化,选出更适合发动机的燃油,充分利用燃油特性以改善发动机热效率。合适的燃油理化特性可加快燃烧速度、抑制爆震、扩展着火界限以实现热效率的提高,并有助于降低有害排放。

    3.4  推广应用低碳燃料

    低碳燃料是分子结构中的碳氢比例较低的一类燃料,包括天然气、甲醇、乙醇等。发动机燃用低碳燃料可以从化学本质上降低燃烧后CO2的生成量。天然气燃料由于储量丰富、成本低廉、储运方便,是一种很有前途的发动机代用燃料,在此做重点分析。天然气的主要成分是甲烷,它的碳氢比是碳氢化合物燃料中最低的。发动机燃用天然气的最大好处是CO2排放低。下面以天然气和汽油为例,对比两种燃料完全燃烧后产生的理论CO2生成量。式(3)给出了碳氢化合物燃料的化学反应方程式。

     

    其中:CnHm为碳氢燃料,n和m分别为燃料分子中碳原子和氢原子的个数,Q为释放的热量。

    以甲烷代表天然气,其分子中碳原子和氢原子的个数分别为1和4;由式(3)可得,燃烧1 kg天然气产生48.28 MJ热量[57],同时将产生2.75 kg CO2。汽油的热值为43.05 MJ/kg,以其代表性成分辛烷代表汽油,其分子中碳原子和氢原子的个数分别为8和18,若产生相同热量,将需消耗1.121 5 kg汽油,产生3.463 kg CO2。也就是说,理论上相同放热量下燃用天然气比燃用汽油产生的CO2减少20.6%。

    在实际发动机应用中,中国在2017年首次开发并量产了首款高性能单一天然气发动机驱动的多用途商务汽车[58],其新欧洲标准行驶循环(new European driving cycle,NEDC)CO2排放为131.4 g/km,比原汽油机下降了27.4%,十分接近2020年我国第4阶段油耗限值折算的CO2限值126.1 g/km。该款发动机排量为1.5 L,压缩比为12,最高热效率达到了37%,采用当量燃烧加三元催化器后处理的技术路线。天然气供给为高压气道多点喷射。

    在国外,2017年德国奥迪汽车发布了A4 Avant天然气汽车[59],其CO2排放为95 g/km,达到了欧盟2020年的限值。该款发动机的排量为2.0L,压缩比为12.6,额定功率为125 kW,最大扭矩为270 Nm,最高热效率达到了40%,采用天然气可续航500 km。该款发动机是基于最新的EA888发动机开发的,增加了天然气高压多点喷射系统, 选用高强度合金活塞确保13.5 MPa的最大爆压、使用耐磨材料的气门座圈、降低进气门座圈角度,图15给出了发动机的剖面示意图。

     

    图15 奥迪A4 Avant天然气发动机剖面图[57]

    从上述两款天然气汽车的实例可以看出,天然气发动机比汽油机大幅度的降低CO2排放。因此,大规模的应用天然气汽车可以十分明显地降低中国交通领域的CO2排放。除了在降低CO2排放方面的优势外,天然气汽车的其他优点还包括清洁燃烧,没有颗粒物排放,天然气价格便宜,车辆运行费用低等。

    中国地域辽阔,东西部能源资源差异很大。应该根据地域和资源情况采用不同的能源。比如,在充电设施比较好并且车主用车距离不远的大城市,可以积极推广电动汽车以减少城市空气污染。在富气地区可以大力推广应用天然气汽车,而在长途运输时应用节能的燃油汽车。

    4.结论

    1)在过去30年,轻型汽车汽油机技术取得了长足的进步;汽油机产品在动力性、燃油经济性和排放控制方面获得了全方位的提高。动力性提高67%以上,热效率提高了8个百分点,提高幅度为20%以上。中国轻型汽车排放标准从国1到国6,有害排放物降低80%以上。

    2)内燃机在未来30年仍然起到关键作用,预测至少60%以上的轻型汽车需要一个内燃机。

    3)内燃机在轻型汽车动力中的地位将逐渐发生变化:从内燃机单独驱动逐渐演变为内燃机和电机共同驱动,其作用的变化类似于从“独唱”变为“二重唱”。内燃机在整车性能上所起到的关键作用将下降,从一个“核心”部件变成“关键”部件,成为一个通用产品,商业模式可能发生变化。

    4)结合混合动力系统应用可以充分利用发动机的高效率区域。混动系统,特别是增程混合动力系统,要求内燃机的运行范围变窄,有必要开发混合动力专用发动机,进一步提高其热效率、简化机构、降低成本。

    5)未来汽油机热效率(特别是实际运行时的热效率)将有大幅度提高,通过多种技术手段的应用,商业化产品有望实现45%的热效率。

    6)汽车燃用天然气可以大幅度降低CO2排放。车用动力将根据地域形成“油、电、气”的多元格局。

    参考文献:

    [1] 周龙保.内燃机学[M]. 北京: 机械工业出版社, 2010:10-60.
    ZHOU Longbao. Internal combustion engine fundamentals [M]. Beijing: China Machine Press, 2010: 10-60. (in Chinese)
    [2] Heywood J B. Internal combustion engine fundamentals (2nd edit) [M].New York: McGraw-Hill Education, 2018: 50-170.
    [3] 张扬军, 张树勇, 徐建中. 内燃机流动热力学与涡轮增压技术研究[J]. 内燃机学报, 2008, 26(S1):90-95.
    ZHANG Yangjun, ZHANG Shuyong, XU Jianzhong.Research in IC engine flow thermodynamics and turbocharging technology [J]. TransChin Soc Internal Combust Engi, 2008, 26(S1): 90-95. (in Chinese)
    [4] 张俊红, 李志刚, 王铁宁. 车用涡轮增压技术的发展回顾、现状及展望[J]. 小型内燃机与摩托车,2007(1): 66-69.
    ZHANG Junhong, LI Zhigang, WANG Tiening. Retrospect, status, and expectation for turbocharger technology of vehicle [J]. Small Internal CombusEngi Motorcycle, 2007(1): 66-69. (in Chinese)
    [5] 王树青. 基于涡轮增压技术的车用汽油机性能提升及试验评价[D]. 长沙:湖南大学, 2012.
    WANG Shuqing. Performance improvementand test evaluation of automotive gasoline engine based on turbochargingt echnologies[D]. Changsha:Hunan University, 2012. (in Chinese)
    [6] Han Zhiyu, Weaver C, Wooldridge S, et al.Development of a new light stratified-charge DISI combustion system for afamily of engines with upfront CFD coupling with thermal and optical engine experiments [R]. SAE Paper, 2004-01-0545.
    [7] HAN Zhiyu, YIJianwen, Trigui N. Stratified mixture formation and piston surface wetting in a DISI engine [R]. SAE Paper, 2002-01-2655.
    [8] 张玉银, 张高明, 许敏. 直喷汽油机燃烧系统开发中的喷雾激光诊断技术[J]. 汽车安全与节能学报, 2011,2(4): 294-307.
    ZHANG Yuyin, ZHANG Gaoming, XU Min. Laser diagnostics for spray of sparkignition direct injection (SIDI) combustion system[J]. J Autom Safe Energ,2011, 2(4): 294-307. (in Chinese)
    [9] 陈豪. 直喷汽油机缸内过程稳定性机理的可视化研究[D]. 上海:上海交通大学, 2014.
    CHEN Hao. Analyzing cycle-to-cyclevariations of in-cylinder processes in an optical spark-ignitiondirect-injection engine [D]. Shanghai: Shanghai Jiaotong University, 2014. (inChinese)
    [10] Richards K, Senecal P, PomraningE. Converge (Version 2.2.0) Manual [M]. Madison: Convergent Science, 2014: 286-303.
    [11] Han Z, Reitz R D. Turbulence modeling of internal combustion engines using RNG κ-ε models [J]. Comb Sci Tech,1995, 106(4-6): 267-295.
    [12] Rutland C J. Large-eddy simulations for internal combustion engines – a review [J]. Int’l J Engi Res,2011, 12(5): 421-451.
    [13] Pera C. An experimental database dedicated to the study and modelling of cyclic variability in spark-ignitionengines with LES [R]. SAE Paper,2011-01-1282.
    [14] Fontanesi S, D’adamo A, RutlandC J. Large-Eddy simulation analysis of spark configuration effect oncycle-to-cycle variability of combustion and knock [J]. Int’l J Engi Res, 2015,16(3): 403-418.
    [15] Yue Z, Reitz R D. An equilibrium phase spray model for high-pressure fuel injection and engine combustion simulations [J]. Int’l J Engi Res, 2019, 20(2): 203-215.
    [16] 解茂昭,贾明. 内燃机计算燃烧学(第三版) [M]. 北京: 科学出版社, 2016, 171-176.
    XIE Maozhao, JIA Ming. Computational combustion for internal combustion engines (3rd edit) [M]. Beijing: Science Press,2016: 171-176. (in Chinese)
    [17] Tap F A, Goryntsev D, Meijer C,et al. A first investigation on using a 1000+ species reaction mechanism for flame propagation and soot emissions in CFD of SI engines [C] // International Multidimensional Engine Modeling User's Group Meeting, Detroit (USA),2016: 1-5.
    [18] Zhang Yizhou, Ghandhi J,Rothamer D. Comparisons of particle size distribution from conventional and advanced compression ignition combustion strategies [J]. Int’l J Engi Res, 2018,19(7): 699-717.
    [19] Wardsauto.10 Best Engines [EB/OL]. [2017-12-14]. http://www. wards auto.com.
    [20]中国汽车发动机网. "中国心"年度十佳发动机[EB/OL]. [2018-11-29]. http://www.china-engine.net.
    China-Engine.“Ten Best Engines”[EB/OL]. [2018-11-29]. http://www.china-engine.net. (inChinese)
    [21]Nakta K, Nogawa S, Takahashi D, et al. Engine technologies for achieving 45% thermal efficiency of SI engine [J]. SAE Int’l J Engi, 2016, 9(1): 179-192.
    [22] Hakariya M,Toda T, Sakai M. The new Toyota inline 4-cylinder 2.5 L gasoline engine[R]. SAEPaper, 2017-01-1021.
    [23] Yamaji K, TomimitsuM, Takagi I, et al. New 2.0 L I4 gasoline direct injection engine with Toyota new global architecture concept [R]. SAE Paper, 2017-01-0370.
    [24] 中华人民共和国工业和信息化部. 乘用车企业平均燃料消耗量与新能源汽车积分并行管理办法 [EB/OL]. [2017-09-28]. http://www.miit.gov.cn/n1146290/n4388791/c5826378/content.html.
    Ministry of Industry and InformationTechnology of the People's Republic of China. Method for parallel management of average fuel consumption of passenger vehicle enterprises and new energyvehicle credits [EB/OL]. [2017-09-28].  http://www.miit.gov.cn/n1146290/n4388791/c5826378/content.html.(in Chinese)
    [25] 中华人民共和国工业和信息化部. 乘用车燃料消耗量第四阶段标准解读[EB/OL]. [2015-01-26].http://www.miit.gov.cn /n1146295/n1652858/n1653018/c3780606/content.html.
    Ministry of Industry and Information Technology of the People's Republic of China. Interpretation of the fourth stage of passenger vehicle fuel consumption standard [EB/OL]. [2015-01-26].ttp://www.miit.gov.cn/n1146295/n1652858/n1653018/c3780606/content.html. (inChinese)
    [26] 张欣. 车用发动机排放污染与控制(第1版)[M]. 北京: 北京交通大学出版社, 2014: 16-31.
    ZHANG Xin. Emission pollution and control for vehicle engines (1st edit) [M]. Beijing: Beijing JiaotongUniversity Press, 2014:16-31. (in Chinese)
    [27] 中华人民共和国生态环境部.轻型汽车污染物排放限值及测量方法(中国第6阶段)[EB/OL]. [2016-12-23]. http://kjs.mee.gov.cn/hjbhbz/bzwb/dqhjbh/dqydywrwpfbz/201612/t20161223_369476.shtml.
    Ministry of Ecological Environment of the People's Republic of China. Limits and measurement methods for emissions from light-duty vehicles(CHINA 6)[EB/OL]. [2016-12-23]. http: // kjs.mee.gov.cn/hjbhbz/bzwb/dqhjbh/dqydywrwpfbz/201612/t20161223_369476.shtml.(in Chinese)
    [28] Bunsen T, Cazzola P, Gorner M, et al. Global EV Outlook 2018:Towards cross-modal electrification [R]. Int’l Energy Agency, 2018.
    [29] Heywood J, MackenzieD, Akerlind I, et al. On the road toward 2050 potential for substantial reductionsin light-duty vehicle energy use and greenhouse gas emissions [R]. Cambridge,MA: Massachusetts Institute of Technology, 2015.
    [30] 中国汽车工程学会. 节能与新能源汽车技术路线图[M]. 北京: 机械工业出版社, 2016: 332-346.
    China Society of AutomotiveEngineers. Technology road map for energy saving and new energy vehicles [M].Beijing: China Machine Press, 2016: 332-346. (in Chinese)
    [31] 刘科, 吴昌宁. 中国新能源汽车发展战略之再思考[EB/OL]. [2018-09-04].http://finance.ifeng.com/a/20180904/16484592_0.shtml.
    LIU Ke,WU Changning. Rethinking the development strategy of China's new energy vehicles [EB/OL]. [2018-09-04]. http://finance.ifeng.com/a/20180904/16484592_0.shtml.(in Chinese)
    [32] Brennan J W, Barder T. Battery electric vehicles vs. internal combustion engine vehicles[R]. Arthur D. Little, 2016.
    [33] 帅石金, 欧阳紫洲, 王志. 混合动力乘用车发动机节能技术路线展望 [J]. 汽车安全与节能学报,2016, 7(1): 1-13.
    SHUAI Shijin, OUYANG Zizhu, WANG Zhi. Prospectof energy-saving technology roadmaps of engines for hybrid passenger cars [J]. JAutom Safe Energ, 2016, 7(1): 1-13. (in Chinese)
    [34] Yonekawa A, Ueno M, Watanabe O,et al. Development of new gasoline engine for ACCORD plug-in hybrid[R]. SAEPaper, 2013-01-1738.
    [35] 韩志玉,高晓杰,吴振阔,等. 同济增程式混合动力系统开发报告[R]. 同济大学新能源汽车工程中心,2019.
    HAN Zhiyu, GAO Xiejie,WU Zhenkuo, et al. Development report of Tongji range-extended hybrid powertrain [R]. Clean Energy Automotive Engineering Center at Tongji University, 2019. (in Chinese)
    [36] Bassett M, HallJ, Oudenijeweme D, et al. The development of a dedicated range extender engine[R].SAE Paper, 2012-01-1002.
    [37]Nuccio P, De Donno D, Magno A. Development through simulation of a turbocharged 2-stroke GDI engine focused on a range-extender application[R]. SAE Paper,2017-32-0121.
    [38]Iida N. Challenge for ultimate thermal efficiency of internal combustion engineby low temperature combustion technology [C] // Int’l Summit on Breakout TechEngi Fuels, Tianjin, 2018.
    [39]Japan Science and Technology Agency, Keio University, Kyoto University, et al. Achievingmore than 50% maximum thermal efficiency through "Industry-Universitycooperation" [EB/OL]. [2019-01-16]. https: // www.jst.go.jp/pr/announce/20190116/index.html.
    [40]HAN Zhiyu. Overview of recent development of automotive engine technology [R].Ford Research Laboratory, 2001.
    [41] Ikeya K, Takazawa M, Yamada T, et al.Thermal efficiency enhancement of a gasoline engine [J]. SAE Int’l J Engi, 2015,8(4): 1579-1586.
    [42] Akihisa D, DaisakuS. Research on improving thermal efficiency through variable super-high expansion ratio cycle[R]. SAE Paper, 2010-01-0174.
    [43] Mitani S, HashimotoS, Nomura H, et al. New combustion concept for turbocharged gasoline direct-injection engines [J]. SAE Int’l J Engi, 2014, 7(2): 551-559.
    [44] Takahashi D,Nakada K, Yoshihara Y, et al. Combustion development to achieve engine thermal efficiency of 40% for hybrid vehicles [R]. SAE Paper, 2015-01-1254.
    [45] Jocsak J, WhiteD, Armand C, et al. Development of the combustion system for general motors'high-efficiency range extender ecotec small gas engine [J]. SAE Int’l J Engi,2015, 8(4): 1587-1601.
    [46] Matsuo S, IkedaE, Ito Y, et al. The new Toyota inline 4 cylinder 1.8 L ESTEC 2ZR-FXE gasoline engine for hybrid car [R]. SAE Paper, 2016-01-0684.
    [47] Furumata S,Kakimuma T, Tochiki H. Development of new 3.5 L V6 turbocharged gasoline direct injection engine[R]. SAE Paper, 2016-01-1012.
    [48] Wada Y,Nakano K, Mochizuki K, et al. Development of a new 1.5 L I4 turbocharged gasoline direct injection engine [R]. SAE Paper, 2016-01-1020.
    [49] Dempsey A B,Curran S J, Wagner R M. A perspective on the range of gasoline compression ignition combustion strategies for high engine efficiency and low NOx and soot emissions: Effects of in-cylinder fuel stratification [J]. Int’l J Engi Res,2016, 17(8): 897-917.
    [50] Sellanu M C,Sinnamon J, Hoyer K, et al. Full-time gasoline direct-injection compression ignition (GDCI) for high efficiency and low NOx and PM [J]. SAE Int’l J Engi,2012, 5(2): 300-314.
    [51] Thring R H. Homogeneous-charge compression-ignition (HCCI) engines[R]. SAE Paper, 892068.
    [52] Asthana S, BansalS, Jaggi S, et al. A comparative study of recent advancements in the field of variable compression ratio engine technology [R]. SAE Paper, 2016-01-0669.
    [53] Chan S, KhorK A. The effect of thermal barrier coated piston crown on engine characteristics [J]. J Mater Engi Perform, 2000, 9(1): 103-109.
    [54] Goto T, Isobe R, Yamakawa M, etal. The new Mazda gasoline engine Skyactiv-G [J]. Auto Techn, 2011, 11(4):40-47.
    [55] Nakata K. Future engine technology to realize sustainable society [C] // Int’l Summit on Breakout TechEngi Fuels, Tianjin, 2018.
    [56]DOE.Co-optimization of fuels & engines for tomorrow's energy-efficient vehicles[R]. Golden: National Renewable Energy Lab, 2016.
    [57] 蒋德明,黄佐华. 内燃机替代燃料燃烧学 [M]. 西安: 西安交通大学出版社, 2007: 1-46.
     JIANG Deming, HUANG Zuohua. Alternative fuel combustion in internal combustion engines [M]. Xi'an: Xi'an Jiaotong University Press, 2007: 1- 46. (in Chinese)
    [58] 韩志玉. 高性能天然气发动机–现实的清洁低碳汽车动力[C] // 2017APAC/SAECCE ”汽车强国与低碳发展“(高层) 论坛, 上海, 2017.
    HAN Zhiyu. High performance natural gas engine-Realistic clean low-carbon vehicle power [C] // 2017APAC/SAECCE “Powerful Nation in Automotive Industry and Low-Carbon Development (High-Level) Forum”, Shanghai,2017. (in Chinese)
    [59] Mendl G, MangoldR, Rosenberger S. et al. The new audi 2.0l g-tron — Another step towards future sustainable mobility[C] // 38th International Vienna Motor Symposium, Vienna(Austria) 2017

     

    本文摘自《汽车安全与节能学报》2019年第10卷第2期。作者为来自同济大学智能汽车研究所韩志玉教授、吴振阔博士、高晓杰博士

     

    以上就是100唯尔(100vr.com)小编为您介绍的关于汽车动力的知识技巧了,学习以上的汽车动力变革中的内燃机发展趋势知识,对于汽车动力的帮助都是非常大的,这也是新手学习汽修专业所需要注意的地方。如果使用100唯尔还有什么问题可以点击右侧人工服务,我们会有专业的人士来为您解答。

    本站在转载文章时均注明来源出处,转载目的在于传递更多信息,未用于商业用途。如因本站的文章、图片等在内容、版权或其它方面存在问题或异议,请与本站联系(电话:0592-5551325,邮箱:help@onesoft.com.cn),本站将作妥善处理。

    收藏

    赞一个

    踩一下

    换一批

    汽车动力课程推荐

    汽车发动机构造与维修

    汽车应用与维修

    156161人学过

    ¥500/月

    汽车机械基础

    汽车应用与维修

    122510人学过

    ¥500/月

    汽车维护

    汽车应用与维修

    135647人学过

    ¥500/月

    汽车底盘构造与检修

    汽车应用与维修

    99834人学过

    ¥500/月

    汽车车身修复技术

    汽车应用与维修

    125695人学过

    ¥500/月

    汽修专业客服中心

    王老师

    立即交谈

    林老师

    立即交谈
    更多>>

    推荐阅读

    100VR精品课程推荐

    评价

    0
    发表评论

    0/500字

    更多>>

    最新文章

    江苏持续推进职教体系建设改革

    江苏省省委办公厅、省政府办公厅近日印发《关于深化现代职业教育体系建设改革的实施意见》,提出8项重点任务,持续推进现代职业教育体系建设改革,提升职业教育对经济社会发展的适应性和贡献度。 《实施意见》提出,开展省市联合建设改革新模式试点,围绕长三角一体化发展等重大战略,积极推动部省共建,探索省域现代职业教育体系建设新模式;打造市域产教联合体,围绕江苏“1+3”重点功能区、苏锡常都市圈等重点区域,以产业园区为基础,打造一批兼具人才培养、创新创业、促进产业经济高质量发展功能的市域产教联合体;打造行业产教融合共同体,围绕江苏战略性新兴产业、先进制造业、现代服务业和现代农业,由产业链链主企业、高水平高等学校、职业院校联合组建一批行业产教融合共同体;深化职业学校教育教学改革,建设60个左右省级职业教育专业教学资源库、1000门左右省级在线精品课程,扩大优质资源共享;实施产教融合提升行动,对标产业发展前沿,建设集实践教学、社会培训、真实生产和技术服务功能于一体的开放型区域产教融合实践中心。建设50个左右多主体共建共管共享的现代产业学院。省级层面建成30个产教融合实践中心,遴选50个左右高水平专业化实训基地。 来源:新华日报

    辽宁省印发《辽宁省职业教育“双师型”教师认定实施办法(试行)》的通知

    近日,辽宁省教育厅发布关于印发《辽宁省职业教育“双师型”教师认定实施办法(试行)》的通知, 为贯彻落实《教育部办公厅关于做好职业教育“双师型”教师认定工作的通知》(教师厅〔2022〕2号)要求,加快推进我省职业教育“双师型”教师队伍高质量建设,健全教师标准体系,深入推进职业教育“双师型”教师认定工作,特制定《辽宁省职业教育“双师型”教师认定实施办法(试行)》 以下是通知原文 附件: 辽宁省职业教育“双师型”教师认定实施办法(试行) 一、认定范围 全省职业学校(含开展职业教育的本科学校)的专业课教师(含实习指导教师)。公共课教师、校内其他具有教师资格并实际承担教学任务的人员,正式聘任的校外兼职教师,以及其他依法开展职业学校教育的机构中具有教师资格的人员,在符合一定条件的前提下可参照实施。 二、认定标准 《辽宁省中等职业学校“双师型”教师认定标准》(附件1)和《辽宁省高等职业学校“双师型”教师认定标准》(附件2) 三、组织机构 (一)认定管理机构及职责 省教育厅负责全省“双师型”教师认定工作的组织领导、统筹协调。 各市教育局、沈抚示范区社会事业局负责本辖区中等职业学校的“双师型”教师认定管理工作。 各高等职业学校负责组织领导和监管本校的“双师型”教师认定管理工作。 (二)认定实施机构及职责 中等职业学校职业教育“双师型”教师认定实施主体是各市教育局、沈抚示范区社会事业局,负责本区域内中等职业学校“双师型”教师认定工作。 高等职业学校(含开展职业教育的本科学校,以下同)职业教育“双师型”教师认定实施主体是各高等职业学校,负责本校“双师型”教师认定工作。 各市教育局、沈抚示范区社会事业局以及高等职业学校应明确负责部门,组建由教育部门人员、行业企业人员(应具备高级职称)、院校专家(应具备高级职称)等不少于10人共同组成的认定专家评议委员会,具体实施认定工作。根据工作需要可下设若干专业大类评议组,一般不少于5人组成,负责某专业大类“双师型”教师的认定。认定结果经检查复核通过后,报省教育厅备案。 四、认定程序 (一)个人申报。各职业学校负责组织本校教师通过辽宁省职业教育管理与服务平台进行个人申报,并对本校教师申报材料进行真实性、有效性核查,核查合格的,提交认定专家评议委员会。 (二)组织认定。认定专家评议委员会开展评议,评议结果公示5个工作日,无异议后形成认定结果。 (三)结果复查。认定结果经检查复核通过后,省教育厅予以备案,生成“双师型”教师档案,统一管理。 五、激励措施 (一)促进持续发展 各地各校要制定激励政策,建立能进能出、能上能下的动态调整机制,根据教师不同能力条件分级认定,引导和鼓励广大教师走“双师型”发展道路。在职务(职称)晋升、教育培训、评先评优等方面应向“双师型”教师倾斜,课时费标准原则上应高于同级别教师岗位。要根据“双师型”教师不同阶段发展需求,精准提供教育教学、岗位实训、企业实践等机会。要鼓励“双师型”教师取得行业领域职业资格证书、职业技能等级证书,获聘行业领域专业技术职务(职称)。 (二)注重作用发挥 各地各校要充分发挥“双师型”教师在综合育人、企业实践、教学改革、社会服务和教师专业发展等方面带头引领作用,充分挖掘典型案例,探索示范教师培训、顶岗实践、研修访学等成长路径方法。将“双师型”教师作用发挥情况作为“双高”建设计划、优质中职学校和专业建设计划、职业学校办学能力达标、专业设置审批和布局结构优化、现场工程师培养计划,以及教师创新团队、名师(名匠)工作室、技艺技能传承创新平台建设等工作的重要指标。 六、证书管理 在辽宁省职业教育管理与服务平台建立职业教育“双师型”教师管理模块,将职业教育“双师型”教师证书纳入上述平台统一管理。各级各类职业教育“双师型”教师证书有效期为5年,期满后对“双师型”教师能力素质进行复核,突出聘期内岗位业绩考察,促进教师知识技能持续更新,进一步提升“双师型”教师队伍整体水平。 七、工作要求 (一)各地、各校要高度重视,安排具体部门、专人负责,并做好宣传、引导、鼓励和组织申报、材料审核等工作,确保认定工作顺利进行。严格落实评议认定回避制度。学校要对教师申报的材料逐一进行核实,严禁弄虚作假。 (二)各市教育局、沈抚示范区社会事业局以及高等职业学校要制定本区域内或本学校“双师型”教师认定实施细则,向省教育厅备案后实施。各学校应在教师管理信息系统中及时更新“双师型”教师信息,确保数据准确统一。 (三)省教育厅将对认定工作全过程规范指导和监督管理,建立健全公示公开、第三方评估、抽查复查、责任追究、过程追溯等制度,发挥广大教师的监督作用,畅通投诉反馈渠道,确保过程透明规范、结果公平公正。 八、附则 (一)“双师型”教师认定实行师德失范“一票否决”,对已认定发生师德师风违规行为的“双师型”教师应予以撤销。对申报材料弄虚作假者,一经发现,3年内不得再次申报认定。 (二)技工院校“一体化”教师可参照实施。 (三)本办法由辽宁省教育厅负责解释。 附件: 1.《辽宁省中等职业学校“双师型”教师认定标准》 2.《辽宁省高等职业学校“双师型”教师认定标准》 附件1: 辽宁省中等职业学校“双师型”教师认定标准 一、基本要求 (一)贯彻党的教育方针,热爱职业教育事业,具有良 好的思想政治素质和师德素养,自觉践行社会主义核心价值 观,弘扬劳模精神、劳动精神、工匠精神,为人师表,关爱学生。 (二)落实立德树人根本任务,遵循职业教育规律和技术技能人才成长规律,践行产教融合、校企合作,做到工学 结合、知行合一、德技并修。在教育教学和技术技能培养过程中落实课程思政要求,形成相应的经验模式。 (三)具备相应的理论教学和实践教学能力,掌握先进 的教学理念和教学方法,积极参与教学改革与研究。能够采取多种教学模式方式,不断提升数字素养,有效运用现代信息技术开展教学。 (四)能紧跟产业发展趋势和行业人才需求,具有企业相关工作经历或积极深入企业和生产服务一线进行岗位实践,时长、形式、内容、标准等应符合职业学校教师企业实践相关规定。理解所教专业(群)与产业的关系,了解产业发展、行业需求和职业岗位变化,及时将新技术、新工艺、新规范融入教学。 (五)具备专业技术职务资格基本条件,其中校内专任教师申请认定中等职业学校“双师型”教师者必须具有中等职业学校教师资格和中职教师系列初级及以上专业技术职务;校外兼职教师申请认定中等职业学校“双师型”教师者必须具有本专业非高校教师系列初级及以上专业技术职务。 二、认定级别及标准 辽宁省中等职业学校“双师型”教师认定分为初级、中级、高级三个级别,各级别认定条件如下: (一)初级“双师型”教师 1.教学能力须具备下列条件: (1)具有较扎实的专业知识和技能,掌握所教课程的课程标准、教学原理,以及教学、生产实习实训方法等,教学评价达到合格及以上等次。 (2)具有一定的组织和开展教育教学研究的能力,参加校级及以上教育教学研究或教育教学改革项目;或参加校级及以上教师教学能力类竞赛等获得个人或团体三等奖及以上。 2.实践能力条件。须具备下列条件之一: (1)具有本专业或相近专业非教师系列初级及以上专业技术资格证书。 (2)具有从事本专业或相近专业的由国务院人力资源社会保障行政部门负责监管的在院校外实施的中级工(四级)及以上职业技能等级证书。 (3)具有从事本专业或相近专业的由国务院教育行政部门负责监管的在院校内实施的初级及以上职业技能等级证书。 (4)具有从事本专业或相近专业的国家职业资格证书(国家职业资格目录内)并参与(前7名)行业企业具体案例、项目等工作。 (5)具有从事本专业或相近专业国家职业技能鉴定考评员或其他职业技能等级评价初级考评员资格。 (6)获得与本专业相关的发明专利授权(前7名);或实用新型专利授权(前2名);或外观设计专利授权(第1名);或软件著作权(前2名),且实际开展成果转化。 (7)参与(前7名)完成企、事业单位横向项目且到款额累计1万元及以上。 (8)在校级及以上技能类竞赛中担任专家或裁判;或指导学生在校级及以上技能竞赛类、创新创业类、科技发明类竞赛中获得三等奖及以上。 (9)作为参与人获得校级及以上技能竞赛类、创新创业类、科技发明类竞赛中获得三等奖及以上。 (10)近10年中有3年及以上(可累计计算)在企业一线从事本专业技术工作经历;或在近三年内至少参加一期国家级职业教育“双师型”教师培训基地建设企业的培训并取得合格证书。 (11)具有与本专业相关的校级及以上“技术能手”等技术技能类荣誉称号。 3.岗位业绩条件。须具备下列条件之一: (1)经学校认定,参与国家“双优计划”、辽宁省“双优计划”、职业教育“提质培优”行动计划等校级子项目建设,或经学校认定参与省级职业教育专项资金支持的教育教学改革项目。 (2)能够将行业企业新技术、新标准、新规范融入到专业建设、教学改革、教学资源开发、课程建设、实践教学等方面,且经学校考评能够对学生职业技能培养发挥一定促进作用。 (二)中级“双师型”教师 1.教学能力须具备下列条件: (1)具有扎实的理论基础、专业知识和精湛的操作技能,了解本专业发展现状和趋势,掌握先进的教育理念、教学方法,教学业绩显著,教学评价达到良好及以上等次一次。 (2)具有较强的指导与开展教育教学研究、实习实训教学研究、专业建设等能力,主持校级及以上教育教学研究或教育教学改革项目;或参加省级及以上教育教学研究或教育教学改革项目;或参加省级及以上教师教学能力类竞赛等获得个人或团体三等奖及以上。 2.实践能力条件。须具备下列条件之二: (1)具有本专业或相近专业非教师系列中级及以上专业技术资格证书。 (2)具有从事本专业或相近专业的由国务院人力资源社会保障行政部门负责监管的在院校外实施的技师(二级)及以上职业技能等级证书。 (3)具有从事本专业或相近专业的由国务院教育行政部门负责监管的在院校内实施的中级及以上职业技能等级证书。 (4)具有从事本专业或相近专业的国家职业资格证书(国家职业资格目录内)并参与(前5名)行业企业具体案例、项目等工作。 (5)具有从事本专业或相近专业国家职业技能鉴定考评员或其他职业技能等级评价中级考评员资格。 (6)获得与本专业相关的发明专利授权(前5名);或实用新型专利授权(第1名);或软件著作权(第1名),或外观设计专利授权(第1名),且实际开展成果转化。 (7)参与(前5名)完成企、事业单位横向项目且到款额累计3万元及以上。 (8)在市级及以上技能类竞赛中担任专家或裁判;或指导学生在市级及以上技能竞赛类、创新创业类、科技发明类竞赛中获得三等奖及以上。 (9)作为参与人在市级及以上技能竞赛类、创新创业类、科技发明类竞赛中获得三等奖及以上。 (10)近10年中有3年以上(可累计计算)在企业一线从事本专业技术工作经历且担任技术骨干;或近5年中有6个月以上(可累计计算)在企业一线从事本专业实践锻炼且承担投资额度10万元以上技术改造项目,非工科类在相关单位从事本专业实践锻炼。 (11)具有与本专业相关的市级及以上“技术能手”等技术技能类荣誉称号。 3.岗位业绩条件。近五年内须具备下列条件之一: (1)经学校认定,主要参与(前5名)国家“双优计划”、辽宁省“双优计划”、职业教育“提质培优”行动计划等校级子项目建设,或经学校认定主要参与(前5名)省级职业教育专项资金支持的教育教学改革项目。 (2)能够将行业企业新技术、新标准、新规范融入到专业建设、教学改革、教学资源开发、课程建设、实践教学等方面,且经学校考评能够对学生职业技能培养发挥较大促进作用。 (三)高级“双师型”教师 1.教学能力须具备下列条件: (1)深入系统地掌握本专业基础理论,具有丰富的专业知识和精湛的操作技能,掌握国内外本专业发展现状和趋势,掌握先进的教育理念、教学方法,教学业绩突出,教学特色鲜明,经教学评价达到良好及以上等次两次。 (2)在教育教学团队中发挥关键作用,担任市级以上骨干教师、专业带头人、教学名师、教学创新团队带头人、技艺技能传承创新平台负责人等,或主持完成专业人才培养方案制定,或主持省级在线精品开放课建设,或主持省级专业建设。 (3)具有较强的指导与开展教育教学研究、实习实训教学研究、专业建设等能力,主持市级及以上教育教学研究或教育教学改革项目;或参加(前3名)省级及以上教育教学研究或教育教学改革项目;或参加省级及以上教师教学能力类竞赛等获得个人或团体二等奖及以上。 2.实践能力条件。须具备下列条件之二: (1)具有本专业或相近专业非教师系列高级及以上专业技术资格证书。 (2)具有从事本专业或相近专业的由国务院人力资源社会保障行政部门负责监管的在院校外实施的高级技师(一级)及以上职业技能等级证书。 (3)具有从事本专业或相近专业的由国务院教育行政部门负责监管的在院校内实施的高级职业技能等级证书。 (4)具有从事本专业或相近专业的国家职业资格证书(国家职业资格目录内)并参与(前3名)行业企业具体案例、项目等工作。 (5)具有从事本专业或相近专业国家职业技能鉴定高级考评员资格或其他职业技能等级评价高级考评员资格。 (6)获得与本专业相关的发明专利授权(第1名), 或2项实用新型专利授权(第1名),或2项软件著作权(第1名),且实际开展成果转化。 (7)主持完成企、事业单位横向项目且到款额累计10万元以上。 (8)在省级技能类竞赛中担任专家或裁判;或指导学生在省级及以上技能竞赛类、创新创业类、科技发明类竞赛中获得一等奖及以上。 (9)作为参与人在省级及以上技能竞赛类、创新创业类、科技发明类竞赛中获得三等奖及以上。 (10)近10年中有3年及以上(可累计计算)在企业一线从事本专业技术工作经历且担任技术负责人;或近5年中有6个月及以上(可累计计算)在企业一线从事本专业实践锻炼且承担投资额度20万元及以上技术改造项目。 (11)具有与本专业相关的省级“技术能手”技术技能类等荣誉称号。 3.岗位业绩条件。近五年内须具备下列条件之一: (1)经学校认定,重点参与(前2名)国家“双优计划”、辽宁省“双优计划”、职业教育“提质培优”行动计划等校级子项目建设,或经学校认定重点参与(前2名)省级职业教育专项资金支持的教育教学改革项目。 (2)能够将行业企业新技术、新标准、新规范融入到专业建设、教学改革、教学资源开发、课程建设、实践教学等方面,且经学校考评能够对学生职业技能培养发挥突出作用。 三、校外兼职教师申请认定条件 (一)校外兼职教师指来源行业企业的技术人员,仅能选择在有效聘期内的1所学校申报。 (二)校外兼职教师的教学能力条件按以下标准执行,实践能力条件和岗位业绩条件按所申请相应级别的条件执行。 1.申报初级“双师型”教师须从事本专业课程教学满1年,并曾独立承担本专业或相近专业实训教学任务1年或实训课程1门。 2.申报中级“双师型”教师须从事本专业课程教学满2年,并曾独立承担本专业或相近专业实训教学任务2年或实训课程2门。 3.申报高级“双师型”教师须从事本专业课程教学满3年,并曾独立承担本专业或相近专业实训教学任务3年或实训课程2门。 (三)须与兼职聘用单位履行聘用协议满1年,且将行业企业生产、管理经验融入学校,从事人才培养、技术创新、就业创业、社会服务、文化传承等方面改革工作。 附件2: 辽宁省高等职业学校“双师型”教师认定标准 一、基本要求 (一)贯彻党的教育方针,热爱职业教育事业,具有良好的思想政治素质和师德素养,自觉践行社会主义核心价值观,弘扬劳模精神、劳动精神、工匠精神,为人师表,关爱学生。 (二)落实立德树人根本任务,遵循职业教育规律和技术技能人才成长规律,践行产教融合、校企合作,做到工学结合、知行合一、德技并修。在教育教学和技术技能培养过程中落实课程思政要求,形成相应的经验模式。 (三)具备相应的理论教学和实践教学能力,掌握先进的教学理念和教学方法,积极参与教学改革与研究。能够采取多种教学模式方式,不断提升数字素养,有效运用现代信息技术开展教学。 (四)能紧跟产业发展趋势和行业人才需求,具有企业相关工作经历或积极深入企业和生产服务一线进行岗位实践,时长、形式、内容、标准等应符合职业学校教师企业实践相关规定。理解所教专业(群)与产业的关系,了解产业发展、行业需求和职业岗位变化,及时将新技术、新工艺、新规范融入教学过程。 (五)具备专业技术职务资格基本条件,其中校内专任教师申请认定高等职业学校“双师型”教师者必须具有高校教师系列初级及以上专业技术职务;校外兼职教师申请认定高等职业学校“双师型”教师者必须具有本专业非高校教师系列初级及以上专业技术职务。 二、认定级别及标准 辽宁省高等职业学校“双师型”教师认定分为初级、中级、高级三个级别,各级别认定条件如下: (一)初级“双师型”教师 1.教学能力须具备下列条件: (1)具有较扎实的专业知识和技能,掌握所教课程的课程标准、教学原理,以及教学、生产实习实训方法等,教学评价达到合格及以上等次。 (2)具有一定的组织和开展教育教学研究的能力,参加校级及以上教育教学研究或教育教学改革项目;或参加校级及以上教师教学能力类竞赛等获得个人或团体三等奖及以上。 (3)作为参与者在省级及以上期刊发表与申报专业相关的学术论文;或作为参与人获得校级教学研究成果三等奖以上;或参编著作或教材等。 2.实践能力条件一。须具备下列条件之一: (1)具有本专业或相近专业非教师系列初级及以上专业技术资格证书。 (2)具有从事本专业或相近专业的由国务院人力资源社会保障行政部门负责监管的在院校外实施的中级工(四级)及以上职业技能等级证书。 (3)具有从事本专业或相近专业的由国务院教育行政部门负责监管的在院校内实施的初级及以上职业技能等级证书。 (4)具有从事本专业或相近专业的国家职业资格证书(国家职业资格目录内)并参与(前7名)行业企业具体案例、项目等工作。 (5)具有从事本专业或相近专业国家职业技能鉴定考评员或其他职业技能等级评价初级考评员资格。 3.实践能力条件二。须具备下列条件之一: (1)获得与本专业相关的发明专利授权(前7名),或实用新型专利授权(前2名),或外观设计专利授权(第1名),或软件著作权(前2名),且所获专利或软件著作权转化收益3万元及以上。 (2)参与(前7名)完成企、事业单位横向项目且到款额累1万元及以上。 (3)在校级及以上技能类竞赛中担任专家或裁判;或指导学生在校级及以上技能竞赛类、创新创业类、科技发明类竞赛中获得三等奖及以上。 (4)作为参与人在校级及以上技能竞赛类、创新创业类、科技发明类竞赛中获得三等奖及以上。 (5)近10年中有3年及以上(可累计计算)在企业一线从事本专业技术工作经历;或在近三年内至少参加一期国家级职业教育“双师型”教师培训基地建设企业的培训并取得合格证书。 (6)具有与本专业相关的校级及以上“技术能手”等技术技能类荣誉称号。 4.岗位业绩条件。须具备下列条件之一: (1)经学校认定,参与国家“双高计划”、辽宁省“兴辽卓越”、职业教育“提质培优”行动计划等校级子项目建设,或经学校认定参与省级职业教育专项资金支持的教育教学改革项目。 (2)经学校认定,参与校级及以上“一流应用型本科专业”、“卓越工程师教育培养计划”、“工程教育专业认证”等促进应用型人才培养的项目建设,或学校认定参与省级职业教育专项资金支持的促进职业教育人才培养项目。 (3)能够将行业企业新技术、新标准、新规范融入到专业建设、教学改革、教学资源建设、课程建设、实践教学等方面,且经学校考评能够对学生职业技能培养发挥一定的促进作用。 (二)中级“双师型”教师 1.教学能力须具备下列条件: (1)具有扎实的理论基础、专业知识和精湛的操作技能,了解本专业发展现状和趋势,掌握先进的教育理念、教学方法,教学业绩显著,教学评价达到良好及以上等次一次。 (2)具有较强的指导与开展教育教学研究、实习实训教学研究、专业建设等能力,主持校级及以上教育教学研究或教育教学改革项目;或参加省级及以上教育教学研究或教育教学改革项目;或参加省级及以上教师教学能力类竞赛等获得个人或团体三等奖及以上。 (3)作为参与者在省级及以上期刊发表与申报专业相关的学术论文,受到学术界好评;或作为参与人获得校级教学研究成果三等奖以上;或参编著作或教材等受到学术界好评。 2.实践能力条件一。须具备下列条件之一: (1)具有本专业或相近专业非教师系列中级及以上专业技术资格证书。 (2)具有从事本专业或相近专业的由国务院人力资源社会保障行政部门负责监管的在院校外实施的技师(二级)及以上职业技能等级证书。 (3)具有从事本专业或相近专业的由国务院教育行政部门负责监管的在院校内实施的中级及以上职业技能等级证书。 (4)具有从事本专业或相近专业的国家职业资格证书(国家职业资格目录内)并参与(前5名)行业企业具体案例、项目等工作。 (5)具有从事本专业或相近专业国家职业技能鉴定考评员或其他职业技能等级评价中级考评员资格。 3.实践能力条件二。须具备下列条件之一: (1)获得与本专业相关的发明专利授权(前5名);或实用新型专利授权(第1名);或软件著作权(第1名);或外观设计专利授权(第1名),且所获专利或软件著作权转化收益5万元以上。 (2)参与(前5名)完成企、事业单位横向项目且到款额累计3万元及以上。 (3)在市级及以上技能类竞赛中担任专家或裁判;或指导学生在市级及以上技能竞赛类、创新创业类、科技发明类竞赛中获得三等奖及以上。 (4)作为参与人在市级及以上技能竞赛类、创新创业类、科技发明类竞赛中获得三等奖及以上。 (5)近10年中有3年及以上(可累计计算)在企业一线从事本专业技术工作经历且担任技术骨干;或近5年中有6个月及以上(可累计计算)在企业一线从事本专业实践锻炼且承担投资额度10万元及以上技术改造项目,非工科类在相关单位从事本专业实践锻炼。 (6)具有与本专业相关的市级及以上“技术能手”等技术技能类荣誉称号。 4.岗位业绩条件。近五年内须具备下列岗位业绩条件之一: (1)经学校认定,主要参与(前5名)国家“双高计划”、辽宁省“兴辽卓越”、职业教育“提质培优”行动计划等校级子项目建设,或经学校认定主要参与(前5名)省级职业教育专项资金支持的教育教学改革项目。 (2)经学校认定,主要参与(前5名)省级及以上“一流应用型本科专业”、“卓越工程师教育培养计划”、“工程教育专业认证”等促进应用型人才培养的项目建设,或学校认定主要参与(前5名)省级职业教育专项资金支持的促进职业教育人才培养项目。 (3)能够将行业企业新技术、新标准、新规范融入到专业建设、教学改革、教学资源建设、课程建设、实践教学等方面,且经学校考评能够对学生职业技能培养发挥较大的促进作用。 (三)高级“双师型”教师 1.教学能力须具备下列条件: (1)深入系统地掌握本专业基础理论,具有丰富的专业知识和精湛的操作技能,掌握国内外本专业发展现状和趋势,掌握先进的教育理念、教学方法,教学业绩突出,教学特色鲜明,经教学评价达到良好及以上等次两次。 (2)在教育教学团队中发挥关键作用,担任市级及以上骨干教师、专业带头人、教学名师、教学创新团队带头人、技艺技能传承创新平台负责人等,或主持完成专业人才培养方案制定,或主持省级在线精品开放课建设,或主持省级专业建设。 (3)具有较强的指导与开展教育教学研究、实习实训教学研究、专业建设等能力,主持市级及以上教育教学研究或教育教学改革项目;或参加(前3名)省级及以上教育教学研究或教育教学改革项目;或参加省级及以上教师教学能力类竞赛等获得个人或团体二等奖及以上。 (4)作为第一作者在省级期刊发表与申报专业相关的学术论文;或作为完成人(前3名)获得省级及以上教学成果奖三等奖及以上;或作为编著(前2名)出版著作或省级规划教材等。 2.实践能力条件一。须具备下列条件之一: (1)具有本专业或相近专业非教师系列高级及以上专业技术资格证书。 (2)具有从事本专业或相近专业的由国务院人力资源社会保障行政部门负责监管的在院校外实施的高级技师(一级)及以上职业技能等级证书。 (3)具有从事本专业或相近专业的由国务院教育行政部门负责监管的在院校内实施的高级职业技能等级证书。 (4)具有从事本专业或相近专业的国家职业资格证书(国家职业资格目录内)并参与(前3名)行业企业具体案例、项目等工作。 (5)具有从事本专业或相近专业国家职业技能鉴定高级考评员资格或其他职业技能等级评价高级考评员资格。 3.实践能力条件二。须具备下列条件之一: (1)获得与本专业相关的发明专利授权(第1名),或2项实用新型专利授权(第1名),或2项软件著作权(第1名),且所获专利或软件著作权转化收益10万元及以上。 (2)主持完成企、事业单位横向项目且到款额累计10万元及以上。 (3)在省级技能类竞赛中担任专家或裁判;或指导学生在省级及以上技能竞赛类、创新创业类、科技发明类竞赛中获得一等奖及以上。 (4)作为参与人在省级及以上技能竞赛类、创新创业类、科技发明类竞赛中获得三等奖及以上。 (5)近10年中有3年及以上(可累计计算)在企业一线从事本专业技术工作经历且担任技术负责人;或近5年中有6个月及以上(可累计计算)在企业一线从事本专业实践锻炼且承担投资额度20万元及以上技术改造项目。 (6)具有与本专业相关的省级“技术能手”等技术技能类荣誉称号。 4.岗位业绩条件。近五年内须具备下列条件之一: (1)经学校认定,重点参与(前2名)国家“双高计划”、辽宁省“兴辽卓越”、职业教育“提质培优”行动计划等校级子项目建设,或经学校认定重点参与(前2名)省级职业教育专项资金支持的教育教学改革项目。 (2)经学校认定,重点参与(前2名)省级及以上“一流应用型本科专业”、“卓越工程师教育培养计划”、“工程教育专业认证”等促进应用型人才培养的项目建设,或学校认定重点参与(前2名)省级职业教育专项资金支持的促进职业教育人才培养项目。 (3)能够将行业企业新技术、新标准、新规范融入到专业建设、教学改革、教学资源建设、课程建设、实践教学等方面,且经学校考评能够对学生职业技能培养发挥突出作用。 三、校外兼职教师申请认定条件 (一)校外兼职教师指来源行业企业的技术人员,仅能选择在有效聘期内的1所学校申报。 (二)校外兼职教师的教学能力条件按以下标准执行,实践能力条件和岗位业绩条件按所申请相应级别的条件执行。 1.申报初级“双师型”教师须从事本专业课程教学满1年,并曾独立承担本专业或相近专业实训教学任务1年或实训课程1门。 2.申报中级“双师型”教师须从事本专业课程教学满2年,并曾独立承担本专业或相近专业实训教学任务2年或实训课程2门。 3.申报高级“双师型”教师须从事本专业课程教学满3年,并曾独立承担本专业或相近专业实训教学任务3年或实训课程2门。 (三)须与兼职聘用单位履行聘用协议满1年,且将行业企业生产、管理经验融入学校,从事人才培养、技术创新、就业创业、社会服务、文化传承等方面改革工作。

    江西新设一所高职院校

    从江西省教育厅获悉,拟设置赣东职业技术学院,正在公示中。 以下是公示原文: 根据《中华人民共和国高等教育法》《普通高等学校设置暂行条例》《高等职业学校设置标准(暂行)》等有关规定,经第四届江西省高校设置评议委员会专家考察和评议,拟设置赣东职业技术学院获得通过,现将学校相关信息向社会公示。 公示时间:2024年2月18日—2月22日。公示期内,如有不同意见,请本着实事求是的原则,通过邮寄或传真等方式书面实名反映。我们将对线索明确的问题进行调查核实,并为反映人保密。 受理部门:江西省教育厅发展规划处;地址:南昌市红角洲赣江南大道2888号;邮政编码:330038;联系电话:0791-86765095;传真号码:0791-86765093。 附件:拟设置赣东职业技术学院基本情况表 江西省教育厅 2024年2月18日 附件 拟设置赣东职业技术学院基本情况表 学校名称 建校基础 所在地 办学性质 办学层次 举办者 赣东职业技术学院 新设 抚州市 非营利性 民办 高职 中阳建设集团有限公司

    最新批复!江西新余新增1所高级技工学校

    关于同意设立遂川高级技工学校的批复 遂川县人民政府: 你县《关于申请设立遂川高级技工学校的请示》收悉。根据《江西省技工院校设立审批办法》(赣人社发〔2023〕27号)等规定,经实地考察、专家评议、社会公示、会议研究等程序,现批复如下: 一、同意设立遂川高级技工学校。遂川高级技工学校为遂川县政府举办的全日制公办高级技工学校,学制教育规模暂定为5000人,初设茶叶生产与加工、茶艺、电子技术应用、智能制造技术应用、计算机网络应用、健康与社会照护等专业。 二、遂川高级技工学校要落实好立德树人根本任务,紧贴产业发展和市场需求,科学制定发展规划,突出办学特色,强化师资力量,完善人才培养方案,推行工学一体,培育更多高素质高技能人才,为我省高质量发展提供人才支撑。 三、遂川县政府要对学校加强领导,加大经费、编制等保障力度,切实解决学校发展中遇到的困难和问题,推动学校更好服务地方经济社会发展。吉安市人力资源社会保障局要对学校加强业务指导,加大扶持力度,推动学校高质量特色发展。 江西省人力资源和社会保障厅 2024年2月1日

    吉林省将新增一所学院

    吉林省人民政府关于同意设立长白山技师学院的批复 吉政函〔2024〕5号 省人力资源社会保障厅: 你厅《关于提请省政府批复同意设立长白山技师学院的请示》(吉人社报〔2024〕9号)收悉。经研究,现批复如下: 一、同意设立长白山技师学院。举办者为吉林职业技术学院,办学地址在吉林省长白山保护开发区池北区。长白山技师学院业务工作接受你厅指导和监督。 二、长白山技师学院为民办非营利技工院校,办学经费自筹解决。学院以培养技师(预备技师)和高级技工为主要目标,同时承担企业在职职工高技能人才培训任务。开设护理、康复保健、电子商务、休闲体育服务、旅游服务与管理5个专业。招生对象主要为技工学校、高中、高级技工学校毕业生,学制2—5年。 三、你厅及长白山管委会要按照人力资源社会保障部规定的办学条件和教育教学质量标准,加强对学院建设和办学的指导,督促长白山技师学院依法依规办学。 四、长白山技师学院要全面贯彻党的教育方针,坚持社会主义办学方向,落实立德树人根本任务,加强专业和师资队伍建设,

    人力资源社会保障部等七部门关于实施高技能领军人才培育计划的通知

    各省、自治区、直辖市及新疆生产建设兵团人力资源社会保障厅(局)、发展改革委、教育厅(教委、教育局)、科技厅(局)、财政厅(局)、国资委、总工会: 根据中共中央办公厅、国务院办公厅《关于加强新时代高技能人才队伍建设的意见》要求,人力资源社会保障部、国家发展改革委、教育部、科技部、财政部、国务院国资委、全国总工会联合制定了高技能领军人才培育计划。现印发给你们,请结合实际做好组织实施工作。 人力资源社会保障部 国家发展改革委 教育部 科技部 财政部 国务院国资委 全国总工会 2024年1月30日 高技能领军人才培育计划 为贯彻落实党的二十大关于加快建设国家战略人才力量,努力培养造就更多大国工匠、高技能人才的战略部署,进一步扩大高技能人才数量规模,提升素质水平,从2024年到2026年,联合组织实施高技能领军人才培育计划。 一、指导思想 以习近平新时代中国特色社会主义思想为指导,深入贯彻党的二十大精神,坚持党对高技能人才队伍建设的全面领导,培养一批爱党报国、敬业奉献、素质优良、技艺精湛的高技能领军人才(以下简称“领军人才”),支持他们不断成长、发挥作用,为全面建设社会主义现代化国家、推动高质量发展提供高技能人才有力支撑。 二、目标任务 (一)领军人才范围。领军人才指政治立场坚定、践行工匠精神、解决生产难题、推动创新创造、培养青年人才的骨干中坚技能人才,包括获得全国劳动模范、中华技能大奖、全国技术能手、全国五一劳动奖章等荣誉,或享受省级以上政府特殊津贴、获得省级以上表彰奖励,或各省(自治区、直辖市)政府认定的“高精尖缺”高技能人才。 (二)工作目标。以实施新时代人才强国战略为指导,紧密围绕国家重大战略、重大工程、重大项目、重点产业需求,动员和依托社会各方面力量,在先进制造业、现代服务业等有关行业重点培育领军人才。力争用3年左右时间,全国新培育领军人才1.5万人次以上,带动新增高技能人才500万人次左右。健全培养、使用、评价、激励联动推进机制,加快培养高质量发展所需的技术技能型、复合技能型、知识技能型和数字技能型领军人才,全方位用好领军人才,发挥领军人才引领示范作用,带动高技能人才整体发展。 三、重点任务 (三)制定专项培养计划。要加强对领军人才供给需求的预测,结合经济社会转型、科技创新发展和产业结构变革趋势,制定地方性、行业性领军人才专项培养计划。将技能高超、表现突出的青年技能人才及各类职业技能竞赛成绩优异选手做为领军人才培养培育重点,支持其成长成才。建立领军人才培育信息库,摸清掌握领军人才及培育重点对象基本情况,有针对性地做好培养及队伍建设工作。 (四)加大培养培育力度。强化企业主体责任,依托企业培训中心、职业学校(含技工学校,下同)、高技能人才培训基地、公共实训基地、工匠学院、技能大师工作室、劳模和工匠人才创新工作室等平台,通过企业岗位培训、校企联合培养、关键岗位实践、重点项目参与等方式,培养适应产业发展和国家战略需要的领军人才。支持企业联合教育科研机构,通过合作培养、项目协作等方式,帮助领军人才及培育重点对象提高技术研发水平。组织技能研修、同业交流、名师带徒、赴境外培训等活动,提高领军人才的综合素质、技能水平和实践创新能力。推动实施中国特色学徒制,培养技能高超的青年技能人才,并纳入领军人才培育范围。 (五)畅通晋升成长通道。支持企业健全“新八级工”技能岗位等级设置,在设有高级技师的职业(工种)中增设特级技师和首席技师技术职务(岗位),推进特级技师和首席技师评聘工作。对技能岗位等级设置完整的职业(工种),企业可直接认定技师、高级技师、特级技师和首席技师。对技艺高超、业绩突出的一线职工,进一步打破学历、资历、年龄、比例等限制,可直接认定高级工以上职业技能等级。对解决重大工艺技术难题和重大质量问题、技术创新成果获得省部级以上奖项的高技能人才,可破格晋升职业技能等级。支持理论水平高、创新能力强的高技能人才参加相应专业技术职称评审。 (六)提高待遇水平。引导企业建立健全基于岗位价值、能力素质和业绩贡献的技能人才薪酬分配制度,实现多劳者多得、技高者多得。对在技术革新或技术攻关中作出突出贡献的领军人才,企业可从成果转化所得收益中以奖金、股权等多种形式给予奖励。鼓励企业对关键技术岗位领军人才实行年薪制、协议工资制、项目工资制。国有企业可在工资总额内对领军人才予以适当倾斜,结合实际实行特岗特酬。 (七)完善稳才留才机制。鼓励企业创新、完善相关制度,吸引稳定领军人才。支持企业与领军人才依法约定服务期、订立竞业限制协议。对工作中急需、退休后将对工作带来较大影响的领军人才,符合国家统一规定的可推迟办理退休,并向所在地人力资源社会保障部门备案。对实际工作中急需、已办理退休手续的领军人才,企业可与其协商签订返聘协议。 (八)支持发挥作用。创造条件为领军人才参与重点项目和重大工程、领衔一线生产难题攻关、总结推广绝招绝技等提供帮助。保护领军人才知识产权和技术创新成果转化权益。支持领军人才参加国内外大型工业展会、“一带一路”框架下南南合作技能开发网络、对外援助等合作项目。组织领军人才担任学徒的企业导师,鼓励领军人才到职业学校兼职,提升学徒、学生的实践能力、技能水平和职业素养。 (九)加强领军人才平台建设。优先支持参与国家重大战略、重大工程、重大项目、重点产业的领军人才领衔创建技能大师工作室、劳模和工匠人才创新工作室,聚焦先进制造业、战略性新兴产业、数字技能等领域开展技术革新、技能攻关和人才培养工作,符合条件的按规定给予经费支持。鼓励各地打造人才港、工匠城等技能平台,组织领军人才开展技能文化传播活动,设立技能展示、技能互动、职业体验区域,面向公众和青少年学生加强技能知识传播和文化培育。 (十)选拔表彰优秀领军人才。组织开展各类职业技能竞赛和岗位练兵活动,对涌现出的优秀选手,按规定授予相关荣誉、落实职业技能等级晋升政策,纳入培育重点对象范围。加大省部级以上表彰奖项和省级以上政府特殊津贴向高技能人才支持力度,积极推荐优秀高技能人才申报参评全国劳动模范和先进工作者、中华技能大奖、全国技术能手、全国五一劳动奖章、国家科学技术进步奖、全国职工优秀技术创新成果等。将符合条件的优秀领军人才按照有关规定选拔推荐到工会等群团组织挂职或兼职。 四、工作要求 (十一)加强组织领导。建立人力资源社会保障部门统筹、有关部门各司其职、行业企业积极参与的领军人才培育工作机制。要积极向党委和政府汇报工作,加强部门沟通协调力度。人力资源社会保障、发展改革、教育、科技、国资、工会部门要做好信息共享,加强组织推动,共同推动领军人才培育工作。 (十二)做好保障服务。加强技能人才服务窗口、技能大师之家等建设,做好领军人才支持服务工作。各级人力资源社会保障部门、财政部门要结合本地实际,用好就业补助资金、地方人才队伍建设经费等,支持做好领军人才培养,按规定落实好职业培训补贴、高技能人才培养补助等政策。引导企业按规定足额提取和合理使用职工教育经费,60%以上用于一线职工教育和培训,并将此情况与企业申请用地、用能及开展评先评优等挂钩。 (十三)营造良好氛围。充分发挥舆论正面引导作用,多渠道多方式宣传技能人才工作重大政策、重要活动、创新经验和工作成效,进一步营造尊重劳动、尊重知识、尊重人才、尊重创造的良好氛围,激励广大劳动者特别是青年人走技能成才、技能报国之路。突出示范引领、典型带动,深入挖掘领军人才工作事迹、成长经历,讲好技能故事,打造技能明星,大力弘扬劳模精神、劳动精神、工匠精神。

    山西新政:高技能人才可应聘职业和技工院校

    从现在开始,对于优秀高技能人才,山西省职业院校、技工院校可采取直接考核的方式将其招聘至与所获技能奖项相关的岗位工作。山西省人社厅、省教育厅近日印发的《关于职业院校、技工院校招聘优秀高技能人才有关事项的通知》明确相关政策。 根据通知,优秀高技能人才的具体范围包括13类人员:世界技能大赛获奖选手、世界技能大赛国家集训选手、中华技能大奖获得者、享受国务院特殊津贴的高技能人才、全国技术能手、国家技能人才培育突出贡献个人、国家级技能大师工作室领军人、全国技能大赛优胜奖以上选手、全国行业职业技能竞赛获奖选手(一类职业技能大赛中获决赛单人赛项前10名、双人赛项前7名、三人赛项前5名)、享受省政府特殊津贴的高技能人才、获得省部级以上劳动模范表彰的高技能人才、省级综合职业技能大赛一等奖第一名、省级技能大师工作室领军人。 对职业院校、技工院校招聘的优秀高技能人才,省人社厅建立职业资格、职业技能等级与相应职称、学历的双向比照认定制度,其中优秀高技能人才中的技师可认定为中级职称,高级技师可认定为副高级职称,特级技师和首席技师可认定为正高级职称。职业院校、技工院校可以根据需要,将其聘用到相应等级专业技术岗位,其中技师可聘用到专业技术10级岗位,高级技师可聘用到专业技术7级岗位,特级技师和首席技师可聘用到专业技术4级岗位,执行相应岗位工资,纳入职业院校、技工院校常设岗位管理,以后实施正常的岗位等级或层级晋升。职业院校、技工院校常设岗位已满,可以按照相关规定申请特设岗位,用于吸纳优秀高技能人才。

    江苏省中国特色高水平高职学校中期评价结果公示

    近日,江苏省教育厅在其官方公布中国特色高水平高职学校中期评价结果公示,通知全文如下: 根据《省教育厅关于公布江苏省中国特色高水平高职学校名单的通知》(苏教职函〔2021〕48号)要求,经相关学校自评,省教育厅组织专家进行省级评价,形成中期评价结果。现将评价结果予以公示,公示期为2024年2月2日—2月9日。 如对评价结果存在异议,请以书面形式向省教育厅职业教育处反映,并写明联系人姓名、地址、联系电话。单位提出异议的,须加盖本单位公章;个人提出异议的,须签署真实姓名。 联系人:李永乐、薛清,电话:025-83335583、83335605。 联系地址:南京市北京西路15号江苏省教育厅职业教育处,邮编:210024。 附件 江苏省中国特色高水平高职学校 中期评价结果 序号 学校名称 评价结果 1 扬州工业职业技术学院 优 2 江苏信息职业技术学院 优 3 常州工业职业技术学院 优 4 江苏电子信息职业学院 优 5 南京科技职业学院 优 6 苏州经贸职业技术学院 优 7 盐城工业职业技术学院 优 8 江苏财经职业技术学院 优 9 江苏医药职业学院 优 10 苏州市职业大学 优 11 苏州卫生职业技术学院 优 12 常州纺织服装职业技术学院 优 13 无锡工艺职业技术学院 优 14 苏州健雄职业技术学院 良 15 泰州职业技术学院 良 16 扬州市职业大学 良 17 南京旅游职业学院 良 18 苏州工业园区服务外包职业学院 良 19 江苏城乡建设职业学院 良 20 无锡科技职业学院 良 21 南通科技职业学院 良 22 徐州幼儿师范高等专科学校 良 23 镇江市高等专科学校 良 24 江苏商贸职业学院 良 25 苏州工业园区职业技术学院 中 省教育厅 2024年2月2日

    加载更多...