• 首页
  • 工种与考证
  • 全部课程
  • 文章资讯
  • 培训认证
  • VR浏览器下载
  • 分销联盟
  • 学习中心 APP下载
    扫码下载-100VRAPP
    扫码下载-技能培训APP
    扫码下载-互动科普APP
    建议意见 官方客服

    官方客服

    您可以与在线客服进行沟通或者拨打客服热线获得帮助

    电话:0592-2529323    0592-5551325

    邮箱:help@onesoft.com.cn

    在线咨询:

    当前位置:首页 > 文章资讯 > 电子专业 > 太牛了,这么详细的电学电路设计知识:电阻、电容、电感、二极管、三极管、mos管!

    太牛了,这么详细的电学电路设计知识:电阻、电容、电感、二极管、三极管、mos管!

    作者:
    发表于:2019-11-02
    阅读:1947
    评论:0

      电阻

      1概念
    电阻元件的电阻值大小一般与温度,材料,长度,还有横截面积有关,衡量电阻受温度影响大小的物理量是温度系数,其定义为温度每升高1℃时电阻值发生变化的百分数。

      导体的电阻通常用字母R表示,电阻的单位是欧姆(ohm),简称欧,符号是Ω(希腊字母,读作Omega),1Ω=1V/A。比较大的单位有千欧(kΩ)、兆欧(MΩ)(兆=百万,即100万)。

      1TΩ=1000GΩ;1GΩ=1000MΩ;1MΩ=1000KΩ;1KΩ=1000Ω(也就是一千进率)

      串联: R=R1+R2+...+Rn定义式:R=U/I

      电阻元件的电阻值大小一般与温度有关,还与导体长度、横截面积、材料有关。衡量电阻受温度影响大小的物理量是温度系数,其定义为温度每升高1℃时电阻值发生变化的百分数。多数(金属)的电阻随温度的升高而升高,一些半导体却相反。

      如:玻璃,碳在温度一定的情况下,有公式R=ρl/s其中的ρ就是电阻率,l为材料的长度,单位为m,s为面积,单位为平方米。可以看出,材料的电阻大小正比于材料的长度,而反比于其面积。

      2电阻应用

      电阻通常分为三大类:固定电阻,可变电阻,特种电阻。

      RX型线绕电阻,近年来还广泛应用的片状电阻。

      按照功率可以分为小功率电阻和大功率电阻。大功率电阻通常是金属电阻,实际上应该是在金属外面加一个金属(铝材料)散热器,所以可以有10W以上的功率;在电子配套市场上专门卖电阻的市场上可以很容易地看到。

      电阻在电路中起到限流、分压等作用。通常1/8W电阻已经完全可以满足使用。但是,在作为7段LED中,要考虑到LED的压降和供电电压之差,再考虑LED的最大电流,通常是20mA(超高亮度的LED),如果是2×6(2排6个串联),则电流是40mA。

      电位器又分单圈和多圈电位器。单圈的电位器通常为灰白色,面上有一个十字可调的旋纽,出厂前放在一个固定的位置上,不在2头;多圈电位器通常为蓝色,调节的旋纽为一字,一字小改锥可调;多圈电位器又分成顶调和侧调2种,主要是电路板调试起来方便。

      排电阻 ,光敏电阻 ,使用光敏电阻可以检测光强的变化。

      电阻的封装有表面贴和轴向的封装。轴向封装有:axial0.4、axial0.6、axial0.8等等;axial在英语中就是轴的意思;表面贴电阻的封装最常用的就是0805;当然还有更大的;但是更大的电阻不是很常用的。

      电阻作为限流应该是最常用的应用之一,对于单片机外围设计来说,电阻的应用非常重要,在很多时候,我们必须在单片机的I/O端口上连接一个限流电阻,保证外围电路不会应用短路、过载等原因烧坏单片机的I/O端口,甚至整个单片机。

      面对这些问题,恐怕很多人都是知其然不知其所以然,完全凭靠经验获取,并没有完全按照电路的要求计算取值。为此,在这里提出这些问题,并不想教大家怎么去计算这些值,知道欧姆定律的人都应该知道该怎么计算吧,所以,只是希望大家在选择之前,先了解单片机的这些参数,然后,根据参数进行计算。在计算时一定要留一定的预留空间。

      在看一些元器件的DATASHEET文件时,经常会碰到元器件的参数,IOL,IOH,IIL,IIH,我也知道他们指的是输入输出高低电平时的最大最小电流,但在连接时他们之间的匹配问题一直很模糊,如:IOL=1.5MA; IOH=-300UAIIL=-100UA; IIH=10UA;

      参考答案:

      IOL和IOH表示输出为低、高电平时的电流值,同样-号表示从器件流出的电流。4上下拉电阻

      上拉是对器件输入电流,下拉是输出电流;强弱只是上拉电阻的阻值不同,没有什么严格区分;对于非集电极(或漏极)开路输出型电路(如普通门电路)提升电流和电压的能力是有限的,上拉电阻的功能主要是为集电极开路输出型电路输出电流通道。

      ►►3 为增强输出引脚的驱动能力,有的单片机管脚上也常使用上拉电阻。

      ►►5 芯片的管脚加上拉电阻来提高输出电平,从而提高芯片输入信号的噪声容限,增强抗干扰能力。

      ►►7 长线传输中电阻不匹配容易引起反射波干扰,加上、下拉电阻是电阻匹配,有效的抑制反射波干扰。

      就是从电源高电平引出的电阻接到输出端

      ►►2 如果输出电流比较大,输出的电平就会降低(电路中已经有了一个上拉电阻,但是电阻太大,压降太高),就可以用上拉电阻提供电流分量, 把电平“拉高”。(就是并一个电阻在IC内部的上拉电阻上,这时总电阻减小,总电流增大)。当然管子按需要工作在线性范围的上拉电阻不能太小。当然也会用这个方式来实现门电路电平的匹配。

      一般作单键触发使用时,如果IC本身没有内接电阻,为了使单键维持在不被触发的状态或是触发后回到原状态,必须在IC外部另接一电阻。

      一般说的是I/O端口,有的可以设置,有的不可以设置,有的是内置,有的是需要外接,I/O端口的输出类似于一个三极管的C,当C接通过一个电阻和电源连接在一起的时候,该电阻成为上拉电阻,也就是说,该端口正常时为高电平;C通过一个电阻和地连接在一起的时候,该电阻称为下拉电阻。

      5典型应用

      在外设没有收到控制时,我们需要把某一外设或单片机I/O端口固定在某一固定电平上时,需要根据需要接上下拉电阻,例如:上图中,对于按键输入来说,在没有按下按键时,如果没有上拉电阻的存在,单片机端口将处于悬乎状态,没有确定电平,当然如果有内部上拉电阻的单片机除外,加上上拉电阻会,在没有按键时,单片机端口保持高电平,有按键时,单片机端口将输入低电平。

      而对于蜂鸣器来说,由于和按键有同样的效果,不加上拉电阻,无法区别在没有单片机控制时,三极管的工作状态,所以,必须加上上拉电阻以保障无单片机控制时,三极管截止,蜂鸣器不工作。

      有时候由于器件自身设计的原因,如果不接外部上下拉电阻,设备无法正常实现高低电平的转换。例如,对于开漏输出的I2C总线来说,如果不接上拉电阻,其只能输出低电平,无法实现高电平输出,加上上拉电阻,保证在没有控制信号时,通过上拉电阻实现高电平。

      电容

      1概念
    电容(或称电容量)是表现电容器容纳电荷本领的物理量。

      电容从物理学上讲,它是一种静态电荷存储介质,可能电荷会永久存在,这是它的特征,它的用途较广,它是电子、电力领域中不可缺少的电子元件。主要用于电源滤波、信号滤波、信号耦合、谐振、滤波、补偿、充放电、储能、隔直流等电路中。

      电容的符号是C。在国际单位制里,电容的单位是法拉,简称法,符号是F,由于法拉这个单位太大,所以常用的电容单位有毫法(mF)、微法(μF)、纳法(nF)和皮法(pF)等,换算关系是:

      1微法(μF)= 1000纳法(nF)= 1000000皮法(pF)。1伏安时=1瓦时=3600焦耳

      一个电容器,如果带1库的电量时两级间的电势差是1伏,这个电容器的电容就是1法,即:C=Q/U 但电容的大小不是由Q(带电量)或U(电压)决定的,即:C=εS/4πkd 。其中,ε是一个常数,S为电容极板的正对面积,d为电容极板的距离,k则是静电力常量。常见的平行板电容器,电容为C=εS/d(ε为极板间介质的介电常数,S为极板面积,d为极板间的距离)。

     
    定义式:C=Q/U多电容器并联计算公式:C=C1+C2+C3+…+Cn三电容器串联:C=(C1*C2*C3)/(C1*C2+C2*C3+C1*C3)

      2电容的应用

      ►►1 按照结构分三大类:固定电容器、可变电容器和微调电容器;►►3 按用途分有:高频旁路、低频旁路、滤波、调谐、高频耦合、低频耦合、小型电容器;►►5 低频旁路:纸介电容器、陶瓷电容器、铝电解电容器、涤纶电容器;►►7 调谐:陶瓷电容器、云母电容器、玻璃膜电容器、聚苯乙烯电容器;►►9 低耦合:纸介电容器、陶瓷电容器、铝电解电容器、涤纶电容器、固体钽电容器;

      电容作用

      耦合电容:用在耦合电路中的电容称为耦合电容,在阻容耦合放大器和其他电容耦合电路中大量使用这种电容电路,起隔直流通交流作用。

      退耦电容:用在退耦电路中的电容器称为退耦电容,在多级放大器的直流电压供给电路中使用这种电容电路,退耦电容消除每级放大器之间的有害低频交连。

      谐振电容:用在LC谐振电路中的电容器称为谐振电容,LC并联和串联谐振电路中都需这种电容电路。

      中和电容:用在中和电路中的电容器称为中和电容。在收音机高频和中频放大器,电视机高频放大器中,采用这种中和电容电路,以消除自激。

      积分电容:用在积分电路中的电容器称为积分电容。在电势场扫描的同步分离电路中,采用这种积分电容电路,可以从场复合同步信号中取出场同步信号。

      补偿电容:用在补偿电路中的电容器称为补偿电容,在卡座的低音补偿电路中,使用这种低频补偿电容电路,以提升放音信号中的低频信号,此外,还有高频补偿电容电路。

      分频电容:在分频电路中的电容器称为分频电容,在音箱的扬声器分频电路中,使用分频电容电路,以使高频扬声器工作在高频段,中频扬声器工作在中频段,低频扬声器工作在低频段。

      调谐电容:连接在谐振电路的振荡线圈两端,起到选择振荡频率的作用。

      中和电容:并接在三极管放大器的基极与发射极之间,构成负反馈网络,以抑制三极管极间电容造成的自激振荡。

      定时电容:在RC时间常数电路中与电阻R串联,共同决定充放电时间长短的电容。

      缩短电容:在UHF高频头电路中,为了缩短振荡电感器长度而串联的电容。

      锡拉电容:在电容三点式振荡电路中,与电感振荡线圈两端并联的电容,起到消除晶体管结电容的影响,使振荡器在高频端容易起振。

      预加重电容:为了避免音频调制信号在处理过程中造成对分频量衰减和丢失,而设置的RC高频分量提升网络电容。

      移相电容:用于改变交流信号相位的电容。

      降压限流电容:串联在交流回路中,利用电容对交流电的容抗特性,对交流电进行限流,从而构成分压电路。

      S校正电容:串接在偏转线圈回路中,用于校正显像管边缘的延伸线性失真。

      消亮点电容:设置在视放电路中,用于关机时消除显像管上残余亮点的电容。

      启动电容:串接在单相电动机的副绕组上,为电动机提供启动移相交流电压,在电动机正常运转后与副绕组断开。

      3去耦电容

      电容的阻抗为1/(2π*f*C),频率越高,阻抗应该越小。在结构上,小容量的电容器在高的频率处,而大容量的电容器则在较低的频率处,电容的阻抗变得最低。因此,在电源上并联一个小容量电容和一个大容量电容是很有必要的,这样在很宽的频率范围降低电源对地的阻抗。

      小容量的电容器是在高频情况下降低阻抗的,所以如果不配置在电路附近,则电容器的引线增长,由于引线本身的阻抗,电源的阻抗不能降低。使用在使用小电容时,一定将尽量靠近器件的电源输入脚,否则就算添加了这个电容也没有任何意义。大容量电容器由于其低频特性,在布局时可以适当离器件远些也没有问题。在低频电路上即使没有小电容C1,电路也能正常工作。但是在高频电路中,比起大电容C2来说,C1起着更为重要的作用。

      从习惯上来说,旁路电容也有大小两个电容,形成两条通路,也保证电路的可靠性。

      4耦合电容
    电容耦合的作用是将交流信号从前一级传到下一级。耦合的方法还有直接耦合和变压器耦合的方法。直接耦合效率最高,信号又不失真,但是,前后两级工作点的调整比较复杂,相互牵连。为了使后一级的工作点不受前一级的影响,就需要在直流方面把前一级和后一级分开。

      同时,又能使交流信号从前一级顺利的传递到后一级,同时能完成这一任务的方法就是采用电容传输或者变压器传输来实现。他们都能传递交流信号和隔断直流,使前后级的工作点互不牵连。但不同的是,用电容传输时,信号的相位要延迟一些,用变压器传输时,信号的高频成分要损失一些。一般情况下,小信号传输时,常用电容作为耦合元件,大信号或者强信号传输时,常用变压器作为耦合元件。

      在AD于DA电路上,我们需要把数字信号和模拟信号进行相互转换,为保障数字喜欢与模拟喜欢的互不干涉,我们往往需要在单片机的输入端或输出端串联一个电容,对电路进行耦合。

      用于振荡回路中,与电感或电阻配合,决定振荡频率(时间)的电容称之为振荡电容。

      Fx = F0(1+C1/(C0+CL))^(1/2);

      具体公式不用细想,我们可以从中得知负载电容的减小可以使实际频率Fx变大,原有电路使用的是33pF的两个电容,则并联起来是16.5pF,我们的贴片电容只有27pF,33pF,39pF,所以我们选用了27pF和39pF并联,则电容为15.95pF。电容焊好后,测量比原来大了200多赫兹,落在了设计范围内。

      对于这电容来说,大家应该再熟悉不过了,基本上,没有一个带有微处理器的电路都至少有一个带有起振电容的电路。虽然,大多是情况下,我们都是按照经验选择这两个电容。实际上,这样不科学,有的时候晶振并不会工作。所以,选择合适是起振电容还是很有必要的。实际上,不同的晶振,起需要的起振电容是不同的,在购买晶振时应该选择合适的晶振,一般来说在晶振的数据手册上也提供了选择起振电容的依据。

    6复位电容

      随着+5V直流电压的充电,Al的①脚上的电压达到了一定值,集成电路Al内部所有电路均可建立起初始状态,复位工作完成,CPU进入初始的正常工作状态。这一复位电路的目的:使集成电路Al的复位引脚①脚上直流电压的建立滞后于集成电路Al的+5V直流工作电压规定的时间,如图5-69所示的电压波形可以说明这一问题。

      电感

      1.电感作为一种能够改变电流的特殊器件,在数字电路中应用相对比较少,一般都应用在与电源相关的部分。

      电感(inductance of an ideal inductor)是闭合回路的一种属性。当线圈通过电流后,在线圈中形成磁场感应,感应磁场又会产生感应电流来抵制通过线圈中的电流。这种电流与线圈的相互作用关系称为电的感抗,也就是电感,单位是“亨利(H)”。

      自感,互感电感符号:L1H=10^3mH=10^6μH=10^9nH。除此外还有一般电感和精密电感之分精密电感:误差值为5%,用J表示;误差值为1%,用F表示。

      2电感应用

      电感的作用:通直流阻交流这是简单的说法,对交流信号进行隔离,滤波或与电容器,电阻器等组成谐振电路.

      磁环电感的作用:磁环与连接电缆构成一个电感器(电缆中的导线在磁环上绕几圈作为电感线圈),它是电子电路中常用的抗干扰元件,对于高频噪声有很好的屏蔽作用,故被称为吸收磁环,由于通常使用铁氧体材料制成,所以又称铁氧体磁环(简称磁环)。

      在图中,上面为一体式磁环,下面为带安装夹的磁环。磁环在不同的频率下有不同的阻抗特牲。一般在低频时阻抗很小,当信号频率升高后磁环的阻抗急剧变大。可见电感的作用如此之大,大家都知道,信号频率越高,越容易辐射出去,而一般的信号线都是没有屏蔽层的,这些信号线就成了很好的天线,接收周围环境中各种杂乱的高频信号,而这些信号叠加在原来传输的信号上,甚至会改变原来传输的有用信号,严重干扰电子设备的正常工作。

      因此降低电子设备的电磁干扰(EM)已经是必须考虑的问题。在磁环作用下,即使正常有用的信号顺利地通过,又能很好地抑制高频于扰信号,而且成本低廉。电感的主要参数有电感量、允许偏差、品质因数、分布电容及额定电流等。

      电感量也称自感系数,是表示电感器产生自感应能力的一个物理量。

      电感量的基本单位是亨利(简称亨),用字母“H”表示。常用的单位还有毫亨(mH)和微亨(μH),它们之间的关系是:

      1mH=1000μH

      允许偏差是指电感器上标称的电感量与实际电感的允许误差值

      品质因数
    它是指电感器在某一频率的交流电压下工作时,所呈现的感抗与其等效损耗电阻之比。电感器的Q值越高,其损耗越小,效率越高。

      3储能电感
    例如,在单片机系统中最常使用的开关电源LM2576电源电路中,所有的开关调节器都有两种基本的工作方式:即连续型和非连续型,两者之间的区别主要在于流过电感的电流不同,即电感电流若是连续的则称为连续型;

      若电感电流在一个开关周期内降到零则为非连续型。每一种工作模式都可以影响开关调节器的性能和要求。当负载电流较小时,在设计中可采用非连续模式。LM2576 既适用于连续型也适用于非连续型。

      通常情况下,连续型工作模式具有好的工作特性且能提供较大的输出功率、较小的峰峰值电流和较小的纹波电压。一般应用时可根据下面公式进行电感的选择:(电压单位:V 电流单位:A)

      二极管

      在单片机外围电路中,二极管的应用也非常广泛,而且二极管根据其应用不同,种类非常繁多,下面我们主要谈谈发光二极管、续流二极管、整流二极管、限幅二极管等。

      二极管又称晶体二极管,简称二极管(diode),另外,还有早期的真空电子二极管;它是一种具有单向传导电流的电子器件。在半导体二极管内部有一个PN结两个引线端子,这种电子器件按照外加电压的方向,具备单向电流的转导性。

      一般来讲,晶体二极管是一个由p型半导体和n型半导体烧结形成的p-n结界面。在其界面的两侧形成空间电荷层,构成自建电场。当外加电压等于零时,由于p-n 结两边载流子的浓度差引起扩散电流和由自建电场引起的漂移电流相等而处于电平衡状态,这也是常态下的二极管特性。

      大部分二极管所具备的电流方向性我们通常称之为“整流(Rectifying)”功能。二极管最普遍的功能就是只允许电流由单一方向通过(称为顺向偏压),反向时阻断 (称为逆向偏压)。

      因此,二极管可以想成电子版的逆止阀。然而实际上二极管并不会表现出如此完美的开与关的方向性,而是较为复杂的非线性电子特征——这是由特定类型的二极管技术决定的。二极管使用上除了用做开关的方式之外还有很多其他的功能。

      外加正向电压时,在正向特性的起始部分,正向电压很小,不足以克服PN结内电场的阻挡作用,正向电流几乎为零,这一段称为死区。这个不能使二极管导通的正向电压称为死区电压。当正向电压大于死区电压以后,PN结内电场被克服,二极管正向导通,电流随电压增大而迅速上升。在正常使用的电流范围内,导通时二极管的端电压几乎维持不变,这个电压称为二极管的正向电压。

      当二极管两端的正向电压超过一定数值Vth,内电场很快被削弱,电流迅速增长,二极管正向导通。Vth叫做门坎电压或阈值电压,硅管约为0.5V,锗管约为0.1V。硅二极管的正向导通压降约为0.6~0.8V,锗二极管的正向导通压降约为0.2~0.3V。

      外加反向电压不超过一定范围时,通过二极管的电流是少数载流子漂移运动所形成反向电流。由于反向电流很小,二极管处于截止状态。这个反向电流又称为反向饱和电流或漏电流,二极管的反向饱和电流受温度影响很大。

      一般硅管的反向电流比锗管小得多,小功率硅管的反响饱和电流在nA数量级,小功率锗管在μA数量级。温度升高时,半导体受热激发,少数截流子数目增加,反向饱和电流也随之增加。

      二极管种类有很多,按照所用的半导体材料,可分为锗二极管(Ge管)和硅二极管(Si管)。根据其不同用途,可分为检波二极管、整流二极管、稳压二极管、开关二极管、隔离二极管、肖特基二极管、发光二极管、硅功率开关二极管、旋转二极管等。

      按照管芯结构,又可分为点接触型二极管、面接触型二极管及平面型二极管。点接触型二极管是用一根很细的金属丝压在光洁的半导体晶片表面,通以脉冲电流,使触丝一端与晶片牢固地烧结在一起,形成一个“PN结”。

      由于是点接触,只允许通过较小的电流(不超过几十毫安),适用于高频小电流电路,如收音机的检波等。面接触型二极管的“PN结”面积较大,允许通过较大的电流(几安到几十安),主要用于把交流电变换成直流电的“整流”电路中。平面型二极管是一种特制的硅二极管,它不仅能通过较大的电流,而且性能稳定可靠,多用于开关、脉冲及高频电路中。

      点接触型二极管面接触型二极管键型二极管合金型二极管扩散型二极管台面型二极管平面型二极管合金扩散型二极管外延型二极管肖特基二极管发光二极管

      有的网友可能已经使用过多种LED了吧,不过,不知道你是否知道LED的工作电压?不同颜色的LED,由于使用的材料不同,其工作电压是不同的。一般来说红色、黄色的LED,其工作电压在2V左右;而蓝色、绿色和白色的LED,其工作电压在3V左右。

      如果设计的产品的专门的LED发光类的产品(LED护栏管、LED照明灯等),应该保证LED的工作电压在其正常工作的电压范围,具体的LED灯的工作电压可以通过LED厂家提供的LED参数确定。同时,如果要让LED正常工作,一般其工作电流在20mA左右。当然,如果我们使用的LED是用来作为指示用,那么并不需要LED发太亮的光,在这种情况下,一般认为LED的工作电压在2V左右,工作电流4mA即可,如果需要调节亮度,可以通过改变限流电阻确定。

      上图是最简单的LED应用电路,在这个电路中需要注意的是限流电阻R1的选择。如果该电路用于指示用,而且单片机的I/O端口可以输出4mA左右的电流,则可以直接通过单片机端口控制,则R1的计算公式如下:

      但是,如果这个电路用作照明用,显然是单片机的I/O端口是无法输出这么大电流的,这是,我们可以考虑用三级管或FET来开关控制。当然,如果作为一般指示电路使用时,如果单片机无法输出4mA的电流时,也可用于使用三极管货FET来驱动LED。

      我们通常所说的“续流二极管”由于在电路中起到续流的作用而得名,一般选择快速恢复二极管或者肖特基二极管来作为“续流二极管”,它在电路中一般用来保护元件不被感应电压击穿或烧坏,以并联的方式接到产生感应电动势的元件两端,并与其形成回路,使其产生的高电动势在回路以续电流方式消耗,从而起到保护电路中的元件不被损坏的作用。

      例如:下面的继电器开关电路

      当开关的负载为继电器或电动机等电感性负载时,在截断流过负载的电流时(晶体管进入截止状态)会产生反向电动势。这时产生的电压非常大。当这种电压超过晶体管的集电极-基极间、集电极-发射机间电压的最大额定值Vcbo、Vceo时,晶体管将会被击穿。

      整流二极管

      整流二极管一般为平面型硅二极管,用于各种电源整流电路中。

      普通串联稳压电源电路中使用的整流二极管,对截止频率的反向恢复时间要求不高,只要根据电路的要求选择最大整流电流和最大反向工作电流符合要求的整流二极管即可。例如,1N系列、2CZ系列、RLR系列等。

      整流二极管一般应用在电源电路中,常见的有交流变直流时的电桥。防止电源接反时的,保护二极管等等。对于这类二极管,主要应用的是其单向导电性。在实际的应用中,比较常用的系列是1N系列。

      稳压二极管,英文名称Zener diode,又叫齐纳二极管。此二极管是一种直到临界反向击穿电压前都具有很高电阻的半导体器件.在这临界击穿点上,反向电阻降低到一个很小的数值,在这个低阻区中电流增加而电压则保持恒定,稳压二极管是根据击穿电压来分档的,因为这种特性,稳压管主要被作为稳压器或电压基准元件使用.其伏安特性见图1,稳压二极管可以串联起来以便在较高的电压上使用,通过串联就可获得更多的稳定电压。

      这类二极管往往应用在对电压有一定的特殊要求的地方,高于稳压二极管的电压将会被二极管吃掉,从而起到稳压的作用,当然也可也到限幅的作用。这种二极管一般在单片机电路中,常用用于对输入高电压的信号进行处理,以整输入电压在一个合理的范围,确保不对单片机的I/O端口进行破坏。

      三极管

      1概述
    晶体三极管(以下简称三极管)按材料分有两种:锗管和硅管。而每一种又有NPN和PNP两种结构形式,但使用最多的是硅NPN和锗PNP两种三极管,(其中,N表示在高纯度硅中加入磷,是指取代一些硅原子,在电压刺激下产生自由电子导电,而p是加入硼取代硅,产生大量空穴利于导电)。两者除了电源极性不同外,其工作原理都是相同的,下面仅介绍NPN硅管的电流放大原理。 对于NPN管,它是由2块N型半导体中间夹着一块P型半导体所组成,发射区与基区之间形成的PN结称为发射结,而集电区与基区形成的PN结称为集电结,三条引线分别称为发射极e、基极b和集电极c。

      2三极管工作原理
    由于三极管大多工作在放大状态,这也是三极管应用的基础,下面我们将从三极管放大开始,逐步了解三极管的工作原理。

      三极管是只具有“放大”的单功能器件,这个“放大”功能是非常有用的,在初学者看来三极管的放大工作原理应该是如下图所示:

      实际上不是这样的,从能量守恒可以知道,信号是不可能无缘无故被放大的,放大的信号也必定有来源。输入小的信号,要变成放大的信号,这个能量只能来源于电源供电,即由电源输出一个被放大的形状相同的信号。所以,在外部看来,可以看成输入信号被“放大”了,这就是三极管的放大原理。

    工作原理

      三极管实际上可以这样理解,在三极管的基极和发射极之间加入了二极管,当三极管工作时,基极与发射极之间的二极管的正向压降为0.6~0.7V。反过来可以这样理解,要让三极管工作,实际上可以让三极管里边的二极管工作,当这个二极管工作了,那么三极管以就工作了。

      而且从上图可以看出,由箭头可以看出PN极的方向,同时由这个PN结就可以确定管子的类型为NPN,还是PNP了。例如上图的第一个三极管基极的PN结的P,发射极是PN结的N,故集电极应该为N,所以,第1个三极管为NPN型,同样的方法可以确定第2个三极管为PNP。

      实际上三极管的NPN和PNP都是由两PN结构成。所以,我们可以认为,三极管的基极和发射机间与基极和集电极之间连接2个二极管。在一般的放大电路中,使基极和发射极之间的二极管导通,使基极和集电极之间的二极管截止来设置三极管各端电位。

      3三极管开关电路

      上图左边是正常的放大电路,右边是我们需要的开关电路。从这两个波形不难看出,其状态很像,只是一个是正弦波,一个是方波。如果我们把放大倍数调大,或者把输入信号增大,那么会导致什么现象呢?这一点不难想象,输入输出信号的增大,放大波形的上下均会被切掉。切掉后的正弦波是不是很像我们的方波呢?由此可以看出,我们只需要修改这个放大电路,让其进入两个极端就可以得到开关电路了。

      从发射极放大电路演变掉开关电路的示意图如下:从图中可以看出,电路(a)去掉输入输出两个耦合电容后得到了电路(b),由于放大倍数是有Rc和Re两个电阻决定的,所以去掉Re后,得到了电路(c),同时,基极偏置电路也没有什么必要,当输入信号为0V时三极管处于截止状态,如图(d)。

      上图上边是开路集电极电路,跟负载使用电源没有关系,只要基极有电压,电路就能工作;而上图下边的是开路发射极,基极电压与负载电源是有关系的,输出电压要比输入电压低0.6V。所以,这两种开关电路各有优缺点。上边电路的开关速度不够高,还必须通过添加其他器件来提高其开关速度。而下边电路的开关速度却非常快,但输入电源和输出电源有关联。所以,在实际的应用中,比较常用的还是左边的那种方式,本人也建议尽量采用上边的(b)图,而尽量不要应用右边的这两种方式。

      上面提到开路集电极电路的最大缺点就是开关速度不够快,在需要快速开关时,达不到我们的要求,为此下面我们看看怎么来提高其开关速度。

      肖特基箍位

      提高三极管开关速度的另外一种方法是添加肖特基二极管箍位。这里利用的是这种二极管是采用金属与半导体接触形成具有整流作用,这种二极管的开关速度很快。

      三级管的开关应用非常多,常见的有控制继电器、控制LED、控制LCD背光、控制光耦等,一切开关电路几乎都可以使用三极管或者需要三极管协助完成。

      继电器是磁性机械开关元件,是用逻辑信号开关各种信号时使用的元件。继电器工作电流相对比较大,直接使用单片机的I/O端口控制是无法实现的,在这种情况下,一般需要使用三极管来驱动控制。在选择三极管时,可以使用NPN,也可以使用PNP。对于这两种三级管来说,唯一不同的就是驱动电平而已,其他完全一致。

      驱动常见电路,这里使用的是NPN三极管,高电平控制。为保证没有控制信号时,三极管处于截止状态,继电器不工作,这里加了一个10K的下拉电阻。为了限制基极的输入电流,这里使用了4.3K的限流电阻,保证在单片机控制下,最大输入电流Ib=(5-0.6)/4.3K=1mA。同时,我们再次强调,在继电器端必须并联一个续流二极管,否则开关继电器的同时可能会损坏三极管,这一点我们在讲述二极管时已经说明。

      对于需要提供大电流才工作的LED电路,我们也必须考虑使用三极管来驱动,有时甚至会需要多个三极管同时才能驱动。

      对于上图来说,每一路LED的显示和每一个LED数码管的驱动,都会使用大的电流。7段数码管的每一段LED需要打电流大概是30mA,而其电流的控制由其串联的限流电阻确定。我们之前也说过,一般LED的工作压降为2V,所以LED的工作电流I=5-2-0.6/82=30mA。

      场效应晶体管

      
    对于场效应管来说,在大学期间老师基本没有讲,让自己自学。到了工作的时候,我们发现场效应管应用还是比较广泛的。其实场效应管和三极管还是很相似的。在很多应用中,甚至可以直接贴换三极管。

      场效应晶体管(Field Effect Transistor缩写(FET))简称场效应管。由多数载流子参与导电,也称为单极型晶体管。它属于电压控制型半导体器件。具有输入电阻高(10^7~10^12Ω)、噪声小、功耗低、动态范围大、易于集成、没有二次击穿现象、安全工作区域宽等优点,现已成为双极型晶体管和功率晶体管的强大竞争者。

      1.与双极型晶体管相比,场效应管具有如下特点。

      (1)场效应管的控制输入端电流极小,因此它的输入电阻(Ω)很大。(2)它组成的放大电路的电压放大系数要小于三极管组成放大电路的电压放大系数;(3)由于不存在杂乱运动的电子扩散引起的散粒噪声,所以噪声低。

    2.工作原理

      场效应管的开关电路和三极管的开关电路一样,都是可以从放大电路变化而得。这里不在说明其变化过程。同样把负载放置在Rd的位置。

      对于偏置电阻的确定,需要注意:其作用和三极管的上下拉电阻一样,用于确定栅极的电平状态,取值一般没有要求,大都取1M。

      场效应管的开关电路应用非常广泛,由于其为电压控制型,而且内阻非常小,常常应用在各种大电流开关控制电路中。例如,热敏微型打印机电源开关、外部电源输出开关等等。简单的说,一般小电流开关电路可以适用三极管,大电流开关电路使用场效应管,这里就不在列举实例了。

      和三极管一样,其开关并不是绝对的,虽然说,在一定的工作电压下,场效应管就处于开关状态。但它的开关状态并不是没有内阻,其内阻的变化一般都是跟随其外部电压的大小而变化。所以,为了减小其内阻,应尽量加大其开关电压值。具体多大合适一定要查询芯片资料。

    以上就是100唯尔教育网(100vr.com)小编为您介绍的关于电学的知识技巧了,学习以上的太牛了,这么详细的电学电路设计知识:电阻、电容、电感、二极管、三极管、mos管!知识,对于电学的帮助都是非常大的,这也是新手学习电子专业所需要注意的地方。如果使用100唯尔教育还有什么问题可以点击右侧人工服务,我们会有专业的人士来为您解答。

    本站在转载文章时均注明来源出处,转载目的在于传递更多信息,未用于商业用途。如因本站的文章、图片等在内容、版权或其它方面存在问题或异议,请与本站联系(电话:0592-5551325,邮箱:help@onesoft.com.cn),本站将作妥善处理。

    收藏

    赞一个

    踩一下

    换一批

    电学课程推荐

    应用电子技术

    应用电子技术

    82302人学过

    ¥99/月

    数字电子技术

    电子技术应用

    109033人学过

    ¥99/月

    模拟电子技术

    电子技术应用

    80220人学过

    ¥99/月

    电子产品测量技术

    电子测量技术与仪器

    162709人学过

    ¥99/月

    电子产品装配技术

    应用电子技术

    153782人学过

    ¥99/月

    电子专业客服中心

    王老师

    立即交谈

    林老师

    立即交谈
    更多>>

    推荐阅读

    100VR精品课程推荐

    评价

    0
    发表评论

    0/500字

    更多>>

    最新文章

    山东积极支持职业教育创新发展高地建设

    <p style="text-indent:2em;"> 从山东省财政厅了解到,2022年,山东省财政下达资金70.6亿元,比上年增长6.8%,推进职业教育重点项目及政策加快落地实施。 </p> <p style="text-indent:2em;"> 在高职院校建设方面,筹集资金48.7亿元,保障省属公办高职院校日常运转经费,对市属公办高职给予生均拨款奖补,支持入选中国特色高水平高职学校和专业(群)建设计划的14所高职院校率先发展,助力实施高水平专业群建设工程,推动高等职业院校专业化特色化发展。 </p> <p style="text-indent:2em;"> 在中职学校建设方面,筹集资金20.8亿元,落实中等职业教育免学费政策,支持实施高水平中职学校和专业特色化建设,促进中职学校高质量发展。 </p> <p style="text-indent:2em;"> 在提升人才培养质量方面,筹集资金1.1亿元,支持开展教师培训、举办全省职业院校技能大赛和开展教育教学研究改革等,增强职业院校教师素质。 </p> <p style="text-indent:2em;"> 来源:央广网 </p>

    将工匠精神融入职业教育血脉

    <div style="text-indent:2em;"> <p> 近日,2022年世界技能大赛特别赛落下帷幕。世界技能大赛是当今世界地位最高、规模最大、影响力最大的职业技能赛事,其竞技水平代表了当今职业技能发展的世界最高水平,被誉为“世界技能奥林匹克”。我国派出的36名选手在赛场上挥洒汗水、激扬青春,发扬执着专注、精益求精、一丝不苟、追求卓越的工匠精神,获得了21枚金牌、3枚银牌、4枚铜牌和5个优胜奖的优异成绩,实现了新的突破。 </p> </div> <div style="text-indent:2em;"> <p> 我国代表团取得的耀眼成绩,离不开近些年来党和国家高度重视职业教育,大力推动职业教育改革创新。党的十八大以来,我国职业教育改革发展走上提质培优、增值赋能的快车道,源源不断地为产业经济发展培养了大批高素质技术技能人才。职业教育事业发展成效显著,一条很重要的经验就是坚持立德树人、德技并修,强调工匠精神与技术技能培养相融合。培养什么人是教育的首要问题,职业教育是培养现代工匠队伍的生力军,工匠精神是职业教育改革创新的灵魂和内核支撑。在持续的改革发展中,我国职业教育着眼学生未来的职业发展以及社会、企业对职业人的素质要求,在课程开发、教学标准制定、职业能力规范中强调融入职业精神培养要求,使每个学生在掌握技术技能的同时,养成爱国敬业、诚实守信、勤勉尽责、精益求精、追求卓越、敢于创新等道德素养和工匠精神。这种育人和育才相统一的学校职业教育培养,为学生日后成长为能工巧匠、大国工匠打下了至关重要的基础。 </p> </div> <div style="text-indent:2em;"> <p> 当前,随着我国由制造业大国向制造业强国转变,能工巧匠、大国工匠的重要性日益凸显。党的二十大报告强调,“加快建设国家战略人才力量,努力培养造就更多大师、战略科学家、一流科技领军人才和创新团队、青年科技人才、卓越工程师、大国工匠、高技能人才”,将大国工匠、高技能人才列为国家战略人才。这充分说明,我们既需要顶尖的科学家、工程师攻克“卡脖子”问题,也需要大量能有效解决“从图纸到产品”这一科技成果转化“最后一公里”问题的实用人才。为更好地服务国家战略,应当深化改革发展经验,大力培育和弘扬工匠精神,培养更多金牌工匠、大国工匠。 </p> </div> <div style="text-indent:2em;"> <p> 优化厚植工匠精神的育人体系。在育人主体上,要联合行业企业,打造共同育人的共同体,将产教融合作为职业教育传承工匠精神的重要载体,充分发挥行业企业培育和弘扬工匠精神的主体作用;在育人过程上,除了将工匠精神融入课堂教学外,还应充分挖掘第二课堂和实习活动中的育人元素,积极培育学生的工匠精神;在育人环节上,除了教学环节,还应将工匠精神充分融入对学生的评价环节,将工匠精神作为考核办学质量、人才培养质量的重要指标。 </p> </div> <div style="text-indent:2em;"> <p> 健全培育工匠精神的保障机制。政府相关部门要加强政策支持,加大对技术技能人才的培养投入和服务供给,尤其是地方政府要细化配套举措,强化相关政策的应用和落实,拓展技术技能人才发展空间。职业学校要健全具备工匠精神育人能力的师资队伍,提高教师弘扬工匠精神的思想意识,提升培育工匠精神教学活动的设计和实施能力。企业则要完善人才选拔、培养和使用机制,将工匠精神作为重要评价维度,激发技术技能人才活力,让更多能工巧匠、大国工匠脱颖而出。 </p> </div> <div style="text-indent:2em;"> <p> 树立尊崇工匠精神的社会风尚。政府相关部门要加大在全社会弘扬工匠精神的宣传力度,发挥先进典型的引领示范作用,提升大国工匠、高技能人才的社会认可度。职业学校要培育弘扬工匠精神的育人文化,有效利用校园文化的隐性教育资源营造立德树人、德技并修的育人氛围。企业要加强爱岗敬业、精益求精、积极创新等方面的企业文化建设,并将其融入生产、管理、绩效考核等相关制度中,切实发挥企业文化的引领作用。全社会要多为广大技术技能人才提供展示精湛技艺的平台,营造良好社会氛围,激发人们学习工匠、争当工匠的内驱力。 </p> </div> <div style="text-indent:2em;"> <p> 工匠精神反映劳动者的精神风貌,是时代精神的生动体现。弘扬工匠精神、培育更多金牌工匠、大国工匠,不仅是学校的责任,更是由政府、行业、企业、学校等多主体共同参与的系统工程。只有全社会共同努力、形成合力,构建一体化的职业教育格局,分工合作、密切配合、各尽其责,营造劳动光荣的社会风尚和精益求精的敬业风气,才能更好地完成培养高素质技术技能人才这一根本任务。 </p> </div> <div style="text-indent:2em;"> <p> (作者系教育部职业教育发展中心副研究员) </p> </div> <div style="text-indent:2em;"> <p> 《中国教育报》2022年12月01日第3版 </p> </div>

    高职线上课如何确保教学质量

    <p style="text-indent:2em;"> 受疫情影响,线上教学日趋常态化。线上教学必然要遵循教学的基本规律,但不同类型的课程,受教学目标、内容、对象、条件等诸多因素的制约,线上教学的形式及方法仍有多样性。高职教育作为另一类型的教育,主要表现在人才培养具有鲜明的职业导向,课程内容与专业技术技能紧密结合,专业知识的应知和专业技术的应会成为教与学质量评价的核心所在。纵观当下高职线上教学,通过对大量优秀教学成果及相关教学问题的深度分析,上好高职线上课确保教学质量有其共同特征。 </p> <p style="text-indent:2em;"> 01 </p> <p style="text-indent:2em;"> 激发学生听课的良好心境 </p> <p style="text-indent:2em;"> 良好的心境是积极情绪的调动者和维护者。线上教学环境与线下教学环境有很大差异,如课堂教学空间、课堂氛围、生师交互等。优质高职线上课,教师教学的共同点是十分重视学生入课心境的调适,如有的通过“打卡”课前预热,让学生以视频方式互相问候,或让学生看看“我”的学习课堂,通过互动“炒热”课堂;有的在预习上做文章,上节课结束时就留下衔接新课的问题,新课时间未到,学生的心其实已经入课,再加上新课前教师组织的分享活动,良好的入课心境已经进入积极状态。课前几分钟的预热,目的是营造课堂的氛围,为学生入课听课的心境打好情绪底色。尤其是在各自为学的情况下,通过教师的“导”让学生快速消除与学习无关的杂念,将注意力集中到课堂中来,用积极的情绪维护学习状态,这类线上教学组织活动十分重要。 </p> <p style="text-indent:2em;"> 02 </p> <p style="text-indent:2em;"> 教学设计及过程要“见”学生 </p> <p style="text-indent:2em;"> 和线上优质课教师们交流,有一点他们谈得很多也看得很重:线上教学是一种不见学生的教学,教师教学的智慧就是要“见”学生,从教学设计到教学实施全过程都能“见”到学生。学生是学习的主人,学生是学习活动的主体,教学如果不从学生出发、不以学生为中心,就是教学大忌。线上教学怎样“见”学生?从高职类型的教学分析,在线上要“见”学生,除了视频镜化的面对面外,重要的还有两点:教学内容处理要“见”学生,即教师要知道本次教学新知识与学生已有知识的发展点在哪里,从而准确定位教学目标,选择合理的教学方法;在挖掘育人因素中要“见”学生,即要从专业职业定向与课程体系融合高度,寻找教学内容与专业素质及技术能力的具体要求,使教书育人更加生动而鲜活。线上教学以学生为中心,扣住学生最优化发展的原则和以知识文化为载体职业导向全面渗透的基本线,线上教学的质量才会有保障。 </p> <p style="text-indent:2em;"> 03 </p> <p style="text-indent:2em;"> 善用“磁性”思维冲击“黏住”学生 </p> <p style="text-indent:2em;"> 线上教学最难的是不在同一空间却要“管”住学生的分心。怎样才能抓住学生的“心”?从高职线上优质课的剖析中不难发现这样一个法则,善用“磁性”思维冲击“黏住”学生。思维同步和思维联动是启发式教学的关键,更是师生互动、心心相系的情感纽带。线上教学要保持学生高度的注意力,除了利用现代技术手段、采用直观多样形式辅助教学外,以思维“碰撞”思维的方法更为重要。高职学生更关注线上教学内容的知识链与学科知识系统的内在联系,这是线上教学抓住学生“心”的把手和切入点。一节线上课的教学内容,是一个相对独立的知识单元,其中会分布众多的知识点,如果简单直白地将这些知识点告知学生,由概念堆积起来的知识学生会学得乏味,课堂注意力难以保持。纵观高职优质线上课,教师总会在知识链的条件下,在知识点的关系处设疑,教师导学生思,从中共同找出答案是什么。学生探求新知识的欲望和新知识的获得,让学生从中得到求知的满足和学习自信的体验。这样的课,以知识链为主线,用问题激励学生思考,由于充分调动了学生自主学习的能动性,探索问题的兴趣触发思维,使学生的注意力不易疲劳和分散,良好的教学效果可期。 </p> <p style="text-indent:2em;"> 04 </p> <p style="text-indent:2em;"> 动态和静态管理都不能缺位 </p> <p style="text-indent:2em;"> 因高职课堂教学很多是“知”“会”交互,懂原理会操作目标下动静搭配多,对教学管理提出了更高要求。对线上优质课进行综合分析,教学管理的发力点主要表现在静态和动态两个方面。线上教学的静态管理,是“应知”目标下知识性教学和知识性学习能力主导下维系教学秩序,教学主体与学习主体间的脉动管理。“应知”教学重点是让学生知道“这是什么”和“为什么”,教学过程中多采用灵活的知识性学习检测、学思分享、课堂练习与订正等方法,通过多样的互动方式了解学情、及时答疑解难,以此保证教学的有序性和学生学习的专注度。线上教学的动态管理,针对高职而言是“应会”教学管理的必然要求,因为将知识性学习提升到技能性训练,纸上作业变为实际操作,需要通过课中“做”来完成。为了远距离地管控教学,教师应时刻关注对话框或通过连麦与学生单线交流,或让学生自拍短视频作线上交流共享。实践证明,这种以学代管、以学促管的方式在动态教学管理中是行之有效的。(作者系浙江工贸职业技术学院高职研究所副研究员)<br /> 来源:中国教育报 </p>

    教育数字化工作成效:一根网线一块屏幕托起教育均衡底线

    <p style="text-indent:2em;"> 党的十八大以来,党中央对我国信息化发展特别是教育信息化作出了全面部署。党的二十大首次将“推进教育数字化”写进党代会报告,标志着推进教育数字化已经成为普遍共识、共同任务。如何以数字化促进教育公平与高质量发展,担当起建设教育强国的历史使命?一起来看报道《勇立教育数字化时代潮头》—— </p> <p style="text-indent:2em;"> <br /> </p> <p style="text-indent:2em;"> 勇立教育数字化时代潮头 </p> <p style="text-indent:2em;"> ——我国教育数字化工作取得积极成效综述之一 </p> <p style="text-indent:2em;"> <br /> </p> <p style="text-indent:2em;"> 许多年前,或许没有人可以想象,数字技术将如何推动14亿人口大国的教育事业腾飞。 </p> <p style="text-indent:2em;"> 今天,一根根密布的网线,上通都市,下连山区,编织出中国教育的广阔前景。 </p> <p style="text-indent:2em;"> “我们将通过教育信息化,逐步缩小区域、城乡数字差距,大力促进教育公平,让亿万孩子同在蓝天下共享优质教育、通过知识改变命运。”习近平总书记始终高度重视信息化发展。党的十八大以来,党中央对我国信息化发展特别是教育信息化作出了全面部署。党的二十大首次将“推进教育数字化”写进党代会报告,标志着推进教育数字化已经成为普遍共识、共同任务。 </p> <p style="text-indent:2em;"> 时代巨浪袭来,我们勇立潮头,以数字化促进教育公平与高质量发展,担当起建设教育强国的历史使命。 </p> <p style="text-indent:2em;"> <br /> </p> <p style="text-indent:2em;"> <br /> </p> <p style="text-indent:2em;"> 世界第一大教育资源数字化中心和服务平台基本形成 </p> <p style="text-indent:2em;"> 2015年,国家主席习近平在致国际教育信息化大会的贺信中表示,当今世界,科技进步日新月异,互联网、云计算、大数据等现代信息技术深刻改变着人类的思维、生产、生活、学习方式,深刻展示了世界发展的前景。 </p> <p style="text-indent:2em;"> 时代大潮中,我们乘势而上。经过多年来的持续努力,特别是近10年的大力推进,信息化促使教育面貌焕然一新。 </p> <p style="text-indent:2em;"> 宁夏回族自治区地处祖国西北腹地,教育发展不平衡不充分问题相对突出。2018年宁夏获批建设全国“互联网+教育”示范省(区)后,全区实现学校200M网络宽带接入、数字教学设备、在线互动教室和数字校园建设全覆盖,宁夏基础教育信息化发展综合指数排名从2017年的全国第15位上升至2020年的第6位。 </p> <p style="text-indent:2em;"> 放眼全国,全国中小学(含教学点)联网率已达100%,比2012年提高了75个百分点,99.9%的学校出口带宽达到100M以上,超过四分之三的学校实现无线网络覆盖,99.5%的学校拥有多媒体教室。 </p> <p style="text-indent:2em;"> 跨越式发展离不开国家高瞻远瞩的战略部署。2012年,教育部发布首个教育信息化十年发展规划;2016年,教育部印发《教育信息化“十三五”规划》;2017年10月,“办好网络教育”被写入党的十九大报告;2018年,教育部印发《教育信息化2.0行动计划》;随后《中国教育现代化2035》《加快推进教育现代化实施方案(2018—2022年)》相继出台……我国教育信息化发展驶入快车道。 </p> <p style="text-indent:2em;"> 行之力则知愈进,知之深则行愈达。“经过教育信息化1.0和2.0的建设,我国数字技术与教育经历了起步、应用、融合、创新4个阶段,目前正处于融合与创新并存的时期。”教育部教育信息化战略研究基地(北京)主任、北京师范大学教授黄荣怀表示,如果把教育信息化视为信息技术推动教育发展的量变过程,那么教育数字化转型将在多年量变积累基础上实现质变。 </p> <p style="text-indent:2em;"> 作为“数字中国战略”的一部分,推进教育数字化转型是贯彻国家战略的应有之义。2022年全国教育工作会议上,教育部部长怀进鹏提出实施国家教育数字化战略行动。《教育部2022年工作要点》也将“实施教育数字化战略行动”列为重点任务。教育部以建设国家智慧教育公共服务平台为抓手,加快推进教育数字化转型和智能升级。 </p> <p style="text-indent:2em;"> 今年3月28日,国家智慧教育公共服务平台正式上线,聚焦学生学习、教师教学、学校治理、赋能社会、教育创新等五大核心功能,持续更新迭代6个版本,构建起“三平台、一大厅、一专题、一专区”的格局,包括中小学、职业教育、高等教育三大资源平台,提供26项政务服务,上线“学习二十大云课堂”“树人课堂”等6个专题,接入15个试点省份智慧教育平台。截至目前,平台汇集了基础教育课程资源4.4万节、职业教育在线精品课6628门、高等教育优质课程2.7万门,累计共享就业岗位1370万个。 </p> <p style="text-indent:2em;"> “我们把资源数据中心和提供公共服务结合起来,为学生学习、教师教育教学、学校教育管理和教育改革研究提供有力支撑。”9月9日,怀进鹏在中宣部组织的新闻发布会上介绍平台应用情况时说,“到目前为止,试点范围已经覆盖全国31个省(区、市)和新疆生产建设兵团,基本形成了世界第一大教育资源数字化中心和服务平台。” </p> <p style="text-indent:2em;"> 据教育部最新统计数据,截至11月底,平台网页版累计浏览量超过50亿人次,访客量达到8亿人。教育部基础教育教学指导委员会信息化教学专委会副主任委员、上海市教委副主任李永智表示,未来,平台将成为教育数字化转型发展中的集大成者,将成为全面支撑引领教育现代化和教育强国建设的重要基础。 </p> <p style="text-indent:2em;"> <br /> </p> <p style="text-indent:2em;"> <br /> </p> <p style="text-indent:2em;"> 一根网线一块屏幕托起教育均衡底线 </p> <p style="text-indent:2em;"> 从成都市到康定市,开车最快也要3个半小时。但从成都七中教师提问到康定中学学生回答,一分钟都用不了。 </p> <p style="text-indent:2em;"> 近年来,四川省甘孜藏族自治州建设“康巴网校”智慧教育云平台,陆续引进成都七中、成都七中育才学校、成都市实验小学和成都市机关三幼的优质教学资源。娃娃们的梦想被屏幕点亮,随着网线飞出大山。 </p> <p style="text-indent:2em;"> 当城市与乡村的教室里都亮起“一块屏”时,中国教育会有怎样的变化? </p> <p style="text-indent:2em;"> 近年来,教育部加强统筹部署,“三通两平台”各项目标任务圆满完成。教育部先后实施两轮全国中小学教师信息技术应用能力提升工程,“三个课堂”应用、“一师一优课、一课一名师”活动深入推进,今年7月至8月,国家智慧教育公共服务平台“暑期教师研修”专题首次上线便为1300余万名教师提供了研修服务,城乡教育的数字鸿沟进一步缩小。 </p> <p style="text-indent:2em;"> 进入新时代,教育要解决的问题从“有学上”转变为“上好学”。为全国学生提供优质教育资源,是教育公平的重要内涵。 </p> <p style="text-indent:2em;"> 国家中小学智慧教育平台被教师们称作“宝藏”。平台上开设德育、课程教学、体育、美育、劳动教育等10个板块、53个栏目,覆盖30个版本、446册教材,有效服务了学生自主学习、教师教学改进、农村优质资源共享和家校协同育人。 </p> <p style="text-indent:2em;"> “在家就能看到北京、上海特级教师上的课,真是太棒了!”“不花钱的名师课,真是太香了!”国家中小学智慧教育平台自3月上线以来,平台浏览总量急剧上升,没有什么能比人民群众的“点赞”更有说服力。 </p> <p style="text-indent:2em;"> 在高等教育阶段,同样续写着优质教育资源共享的故事。 </p> <p style="text-indent:2em;"> 2018年10月8日9时55分,在华东理工大学奉贤校区A教306室,120名学生正在上无机化学课。远在5000多公里外的喀什大学,200名大一新生也在学这门课。他们不仅能实时听到课程内容,还能举手发言、参与课堂互动。 </p> <p style="text-indent:2em;"> 为推动高等教育领域教育公平和整体质量提升,教育部高教司发出“慕课西部行”号召。华东理工大学先行先试,将优质教学资源输送到西部,这门无机化学同步课堂便是国内首次试点。 </p> <p style="text-indent:2em;"> 3年来,“慕课西部行”计划已累计向西部高校提供17.29万门慕课及定制化课程服务,帮助西部地区开展混合式教学327.24万门次,学生参与学习达3.76亿人次,西部地区教师参加应用培训171.4万人次。目前,已有725所西部高校使用慕课开展在线教学或混合式教学,占西部高校比例达97.3%,西部高等教育人才培养能力显著提升。 </p> <p style="text-indent:2em;"> 在职业教育领域,数字化工作同样取得明显进展。高职院校人才培养工作状态数据采集与管理系统、中职学校学籍管理信息系统等网络信息系统,已实现本科层次、专科层次高职学校、中职学校采集全覆盖;203个国家级460个省级职业教育专业教学资源库、5000余门国家级省级校级精品在线课程、1个江西国家职业教育虚拟仿真示范实训基地和215个职业教育示范性虚拟仿真实训基地培育项目等,积累了海量信息化资源,为职业教育加快迈入智慧教育阶段打下了基础;2010年起开始举办全国职业院校技能大赛教学能力比赛,显著提升了教师信息化教学的理念和应用能力。 </p> <p style="text-indent:2em;"> “今年,我们以国家职业教育智慧教育平台为依托,汇聚了职业教育近20年沉淀的信息化资源,既是一次大集成,也是一次大检阅。”教育部职业教育与成人教育司负责人表示,职业教育数字化战略行动正着力构建以学习者为中心的全新职业教育生态系统。 </p> <p style="text-indent:2em;"> <br /> </p> <p style="text-indent:2em;"> <br /> </p> <p style="text-indent:2em;"> 为未来教育改革发展插上数字化之翼 </p> <p style="text-indent:2em;"> 习近平总书记强调,数字技术正以新理念、新业态、新模式全面融入人类经济、政治、文化、社会、生态文明建设各领域和全过程,给人类生产生活带来广泛而深刻的影响。 </p> <p style="text-indent:2em;"> 历史经验同样告诉我们,每一次科技革命和产业变革都给教育带来跨越式发展,数字技术也必将推动教育发生飞跃。 </p> <p style="text-indent:2em;"> 在上海市长宁区,部分学校已将学生手中的智能终端升级为“纸笔同步系统”。纸是经过预处理的普通纸,笔是书写体验与圆珠笔近乎一致的特殊笔,这一系统能将学生使用行为数据转化为学情分析,供教师精准教学。比如,从学生答题的速度和顺序,可判断哪些知识点学生理解比较吃力需加强。 </p> <p style="text-indent:2em;"> 在深圳,2021年成立的云端学校正在常态化运行。参与云端学校的15所学校初一年级的30个班级,语文、数学、英语三科采用同一张课表。学校实行线上+线下、主讲+辅讲的“云端双师”教学模式。教师可根据自身所长承担不同内容的主讲任务,在不增加教师编制的情况下,教学模式发生了深刻变化:小课堂变成超大课堂,参与者相互激励。 </p> <p style="text-indent:2em;"> 数据驱动、以学定教、因材施教……数字化正在推动教、学、管、评、考、就业各个环节的改革走向深入,为未来教育发展插上提速的翅膀。 </p> <p style="text-indent:2em;"> 令人振奋的是,推进教育数字化正呈现由点到面、蓬勃发展之势。今年4月和7月,教育部部署开展两轮国家智慧教育平台地方和学校试点工作。多地把国家平台资源常态化应用与建设纳入学校教育教学管理的基本要求,应用国家平台的积极性持续增强。各试点单位在向国家平台提供优质资源的同时,还大力加强特色资源开发,资源建设供给越发主动。例如,江苏向国家平台提供了苏教版、译林版、人教版优质课程3400多节;四川汇聚一批川剧、非物质文化遗产等特色资源,平台新增各类资源4000余个。 </p> <p style="text-indent:2em;"> 教育部科学技术与信息化司负责人表示,教育部将不断升级完善国家智慧教育公共服务平台,建设国家教育数字化大数据中心,在“助学、助教、助管、助研”上持续发力,不断推动教育数字转型、智能升级、融合创新,加快建设全民终身学习的学习型社会、学习型大国。 </p> <p style="text-indent:2em;"> 风好正是扬帆时。深入推进国家教育数字化战略行动,把数字资源的静态势能转化为教育改革的强大动能,亿万孩子共享优质教育资源就有了坚实保障,教育现代化就有了强大引领,中国特色、中国范式的教育数字化之路未来可期。 </p> <p style="text-indent:2em;"> <br /> </p> <p style="text-indent:2em;"> 文字 | 林焕新 来源 | 《中国教育报》 </p>

    怀进鹏:为全面建设社会主义现代化国家贡献强大教育力量

    <p style="text-indent:2em;"> 习近平总书记在党的二十大报告中强调“教育、科技、人才是全面建设社会主义现代化国家的基础性、战略性支撑”,首次将教育、科技、人才一体安排部署,赋予教育新的战略地位、历史使命和发展格局。11月30日,教育部党组书记、部长怀进鹏在《光明日报》“一把手谈科技文化”栏目撰文《为全面建设社会主义现代化国家贡献强大教育力量》。一起来看—— </p> <p style="text-indent:2em;"> <br /> </p> <p style="text-indent:2em;"> 为全面建设社会主义现代化国家 </p> <p style="text-indent:2em;"> 贡献强大教育力量 </p> <p style="text-indent:2em;"> 教育部党组书记、部长 怀进鹏 </p> <p style="text-indent:2em;"> <br /> </p> <p style="text-indent:2em;"> 百年大计,教育为本。习近平总书记在党的二十大报告中强调“教育、科技、人才是全面建设社会主义现代化国家的基础性、战略性支撑”,首次将教育、科技、人才一体安排部署,赋予教育新的战略地位、历史使命和发展格局。教育系统要自觉提高政治站位,深刻把握我国教育发展的历史方位,加快建设教育强国,加快打造教育、科技、人才共同体,助力世界重要人才中心和创新高地建设,为全面建设社会主义现代化国家奠定坚实的人才基础、提供有力的战略支撑。 </p> <p style="text-indent:2em;"> <br /> </p> <p style="text-indent:2em;"> 打造国家战略科技力量 </p> <p style="text-indent:2em;"> 加强高水平研究型大学建设 </p> <p style="text-indent:2em;"> <br /> </p> <p style="text-indent:2em;"> 习近平总书记强调,高水平研究型大学要把发展科技第一生产力、培养人才第一资源、增强创新第一动力更好结合起来,发挥基础研究深厚、学科交叉融合的优势,成为基础研究的主力军和重大科技突破的生力军。党的十八大以来,随着“双一流”建设扎实推进,高水平研究型大学龙头作用彰显,创新资源加速汇聚,创新能力不断提升,初步形成层次清晰、布局合理、支撑有效的科研平台体系。在全国基础研究和重大科研任务、国家重大实验室建设、国家级三大科技奖励项目中,高校参与比重和贡献份额均超过60%,国家自然科学基金项目80%以上由高校承担,一批具有标志性意义的重大科技成果在高校涌现,有力支撑加快实现高水平科技自立自强。当前,全球科学研究范式和科研组织范式正在发生深刻变革,为我们提供了变道超车的难得历史机遇。教育系统要切实增强使命感、责任感,深刻认识高校作为科技第一生产力、人才第一资源、创新第一动力重要结合点的独特作用,坚持以服务国家战略需求为导向,积聚力量加强原创性引领性科技攻关,加快实现基础研究和关键核心技术的重大突破,努力开辟发展新领域新赛道,主动塑造发展新动能新优势,努力成为贯彻新发展理念、构建新发展格局、推动高质量发展的先导力量、战略力量。 </p> <p style="text-indent:2em;"> <br /> </p> <p style="text-indent:2em;"> 打造国家战略人才力量 </p> <p style="text-indent:2em;"> 全面提高人才自主培养质量 </p> <p style="text-indent:2em;"> <br /> </p> <p style="text-indent:2em;"> 习近平总书记指出,中国是一个大国,对人才数量、质量、结构的需求是全方位的,满足这样庞大的人才需求必须主要依靠自己培养,提高人才供给自主可控能力。党的十八大以来,教育系统坚持以习近平新时代中国特色社会主义思想铸魂育人,全面落实立德树人根本任务,实施“强基计划”、国家关键领域急需高层次人才培养专项等重大项目,集聚了全国超过40%的两院院士、近70%的长江学者和国家杰出青年科学基金获得者,成为识才、聚才、育才、用才的重要平台。面向未来,要坚持为党育人、为国育才,把战略人才力量建设作为重中之重,全面提高人才自主培养质量,着力造就拔尖创新人才,坚定不移走好人才自主培养之路。要加强基础学科人才和卓越工程师培养,突破常规、积极作为,着力推进课程、教材、教师和实践条件建设,有针对性地加强科学教育、工程教育。要加强哲学社会科学人才培养,加快推进构建中国自主的知识体系,在研究解决事关党和国家全局性根本性关键性问题上拿出真本事、取得好成果。要聚天下英才而用之,着力健全人才引进和有利于各类人才脱颖而出、发挥作用的制度体系,大力弘扬科学家精神,培养更多战略科学家、科技领军人才和创新团队,加大对青年科技人才的支持力度,造就大批德才兼备的高素质人才,筑牢国家和民族长远发展大计。 </p> <p style="text-indent:2em;"> <br /> </p> <p style="text-indent:2em;"> 加快建设高质量教育体系 </p> <p style="text-indent:2em;"> 夯实教育、科技、人才强国基础 </p> <p style="text-indent:2em;"> <br /> </p> <p style="text-indent:2em;"> 党的十八大以来,我们在幼有所育、学有所教上持续用力,建成世界上规模最大的教育体系,教育普及水平实现历史性跨越。目前,我国教育普及程度总体上稳居全球中上收入国家行列,其中义务教育和学前教育普及程度达到高收入国家平均水平,高等教育进入国际公认的普及化阶段。迈上以中国式现代化全面推进中华民族伟大复兴新征程,国家重大战略深入实施、经济社会创新发展和人民生活水平不断提高,对教育高质量发展提出新要求。党的二十大对加快建设高质量教育体系作出新的重大部署。下一步,教育系统要主动识变应变求变,加快建设教育强国,办好人民满意的教育,充分发挥教育的基础性、先导性、全局性作用。要坚持以人民为中心发展教育,加快建设高质量教育体系,发展素质教育,促进教育公平,优化区域教育资源配置,着力解决人民群众急难愁盼的教育问题。要系统提高教育发展效能,统筹职业教育、高等教育、继续教育协同创新,优化职业教育类型定位,加快建设中国特色、世界一流的大学和优势学科。要着力增强教育发展动能,以教育评价改革为牵引,统筹推进育人方式、办学模式、管理体制、保障机制改革,深入实施教育数字化战略行动,建设全民终身学习的学习型社会、学习型大国,为加快实现高水平科技自立自强、全面建设社会主义现代化国家作出新的更大贡献。 </p> <p style="text-indent:2em;"> <img alt="图片" src="https://mmbiz.qpic.cn/mmbiz_gif/micxsCYdRywnS1J6ScmgPb78dc5lZ6UrCG0MRia1b9hKNHDZJ6nbvrYibxh4qVuL8pUKyM86SEEUbyjibia3SWXcx2A/640?wx_fmt=gif&wxfrom=5&wx_lazy=1" style="height:auto !important;width:21px;" /> </p> <p style="text-indent:2em;"> <br /> </p> <p style="text-indent:2em;"> 来源 | 《光明日报》 </p>

    山东财政下达资金70.6亿元支持职业教育创新发展高地建设

    <p style="text-indent:2em;"> 2022年,山东省财政下达资金70.6亿元,推进职业教育重点项目及政策加快落地实施,比上年增长6.8%。在高职院校建设方面,筹集资金48.7亿元,保障省属公办高职院校日常运转经费,对市属公办高职给予生均拨款奖补,支持入选中国特色高水平高职学校和专业(群)建设计划的14所高职院校率先发展,助力实施高水平专业群建设工程,推动高等职业院校专业化特色化发展。在中职学校建设方面,筹集资金20.8亿元,落实中等职业教育免学费政策,支持实施高水平中职学校和专业特色化建设,促进中职学校高质量发展。在提升人才培养质量方面,筹集资金1.1亿元,支持开展教师培训、举办全省职业院校技能大赛和开展教育教学研究改革等,增强职业院校教师素质。<br /> 来源:大众日报 </p>

    我国将在中小学校、高等教育、职业学校建设一批虚拟现实课堂

    近日,工信部、教育部等五部门联合印发《虚拟现实与行业应用融合发展行动计划(2022-2026年)》,提出推进关键技术融合创新、提升全产业链条供给能力、加速多行业多场景应用落地、加强产业公共服务平台建设、构建融合应用标准体系等五大重点任务。 对于加速多行业多场景应用落地,文件有了具体要求。其中指出,在中小学校、高等教育、职业学校建设一批虚拟现实课堂、教研室、实验室与虚拟仿真实训基地,面向实验性与联想性教学内容,开发一批基于教学大纲的虚拟现实数字课程,强化学员与各类虚拟物品、复杂现象与抽象概念的互动实操,推动教学模式向自主体验升级,打造支持自主探究、协作学习的沉浸式新课堂。服务国家重大战略,推进“虚拟仿真实验教学2.0”,支持建设一批虚拟仿真实验实训重点项目,加快培养紧缺人才。 文件还提及,要加强产业公共服务平台建设。要求建设共性应用技术支撑平台。聚焦行业共性技术,挖掘行业领域关键技术需求,依托行业龙头企业、高等院校、科研院所建设行业共性技术平台,开展关键技术联合攻关,提供标准与知识产权相关服务,解决制约行业应用复制推广的技术瓶颈,提升跨行业的虚拟现实应用基础能力。 在深化技术研发方面,文件提出,鼓励加大虚拟现实相关基础理论、关键技术与应用技术的研发投入,支持具有技术优势的龙头企业、高校、科研院所、标准组织、产业联盟等组建多元创新载体,加强关键核心技术与产业共性技术供给。支持研发成果通过关键产品、行业应用的迭代加速成熟。 在强化人才支撑方面,文件明确,支持高等院校加强虚拟现实相关学科专业建设,鼓励产学研合作,推进高校、科研机构与企业联合精准育才,加强人才引进,扩大定向培养,培育一批复合型人才。优化企业家成长环境,建立有利于企业家参与创新决策、凝聚创新人才、整合创新资源的新机制,造就高水平领军人才队伍。 根据文件要求,《行动计划》设立的发展目标为:到2026年,三维化、虚实融合沉浸影音关键技术重点突破,新一代适人化虚拟现实终端产品不断丰富,产业生态进一步完善,形成若干具有较强国际竞争力的骨干企业和产业集群。 来源:齐鲁晚报

    办好人民满意的职业教育

    贯彻落实党的二十大精神,提升职业教育人才培养质量,为全面建成社会主义现代化强国、实现第二个百年奋斗目标,以中国式现代化全面推进中华民族伟大复兴提供源源不断的高素质技能人才支持和高水平智力支撑,是高职院校的职责所在、使命所系。办好人民满意的职业教育,要坚持以党建为纲、以服务为魂、以治理为基,全面提升办学治校能力、服务发展能力和人才培养能力。 坚持以党建为纲 办好人民满意的职业教育,离不开高质量党建。高职院校要始终坚持和完善党委领导下的校长负责制,充分发挥校党委领导核心作用,切实发挥带动学校发展的火车头作用。持续夯实政治建设系列举措,提升党员干部政治判断力、政治领悟力、政治执行力,推动职业教育在服务产业发展、促进就业创业、改善民生福祉等方面展现更大作为。 党的二十大报告指出,育人的根本在于立德。高职院校人才培养事关大国工匠养成,事关实体经济发展,事关制造强国建设,要确保党的事业后继有人,必须理直气壮开好思政课,把立德树人作为中心环节,加强思政课教师队伍建设,深入挖掘各门课程中蕴含的课程思政元素,把思想政治工作贯穿教育教学全过程,实现全员全过程全方位育人,引导学生扣好人生第一粒扣子,做合格的社会主义建设者和接班人。同时,加强师德师风建设,职业教育教师也要既精通专业知识、做好“经师”,又涵养德行、成为“人师”,真正成为学生锤炼品格、学习知识、创新思维、奉献祖国的引路人,不断满足职业教育发展新需求和学生发展新期待。 坚持以服务为魂 当今世界,百年变局和世纪疫情交织叠加,技术赋能、数字化变革引起行业产业的深刻转型,我国高素质技术技能人才面临巨大缺口,职业教育的责任更加重大、使命愈显光荣。 党的二十大报告提出,要深入实施人才强国战略。培养造就大批德才兼备的高素质人才,是国家和民族长远发展大计。职业教育作为与市场联系最紧密的教育类型,要牢牢把握服务发展、促进就业的办学方向,面向产业和区域发展需求,积极完善职业教育和培训体系,创新职业教育组织形态,提升职业教育集团化办学水平,培养更多高素质技术技能人才、能工巧匠、大国工匠。 对于北京市职业院校而言,要瞄准城市副中心建设和京津冀协同发展办学,在加强北京“四个中心”功能建设、疏解非首都功能上走在前列、干在实处。要牢固树立首都意识、首善标准,按照类型教育的定位,进一步加强校企合作,深化产城教融合,培养适应新时代首都建设和京津冀协同发展需要的高素质劳动者和技术技能人才,实现自身发展和区域发展同向而行。要瞄准首都现代服务业发展和“两区”建设办学。北京市提出到2025年基本建成以首都功能为引领、具有国际竞争力的现代服务业体系,“两区”即国家服务业扩大开放综合示范区和中国(北京)自由贸易试验区。职业教育院校特别是北京高职院校要立足实际,在专业建设、课程设置、实习实训、校企合作等方面精准对接发展需求,围绕行业新发展、职业新生态、岗位新要求动态调整专业设置和人才培养模式,以更好服务“数字+”产业创新发展需要,为首都现代服务业发展和“两区”建设培养具有新时代行业智慧理念和技术的高素质技术技能人才。 坚持以治理为基 党的二十大报告指出,完善社会治理体系。健全共建共治共享的社会治理制度,提升社会治理效能。高职院校提升现代治理水平,要基于职业教育作为类型教育战略定位的新认识,从健全制度体系、完善共建机制、营造文化氛围上入手,充分体现按照职业教育规律、产业优化规律、经济发展规律办学的特征。 健全制度体系。全面深化依法治校,切实把依法治理作为基本理念和基本方式贯穿学校工作全过程各方面,不断提升运用法治思维和法治方式实施综合改革的能力和水平。坚持制度先行,建立完善以章程为核心,覆盖职业院校党建思政、专业建设、实习实训、校企合作、双师型教师队伍建设、社会服务等方面的制度体系,做好规章制度的废、改、立、释、施,确保制度刚性执行,让制度成为明确规则、规范工作、约束行为的一把利剑。 完善共建机制。职业院校党委要加强对重点工作的顶层设计、统筹谋划、协调调度,发挥把方向、管大局、作决策、抓班子、带队伍、保落实职责。要充分发挥教代会、工代会、团代会、学代会机制作用,支持师生参与学校民主管理、民主监督。以发展目标汇聚力量,以人文关怀凝聚人心,强化协同共抓的大统战格局,凝聚爱校奉献的各方面优秀人才,形成共建共治共享的学校治理新格局。 营造文化氛围。职业教育要以社会主义核心价值观为引领,传承中华优秀传统文化,打造特色校园文化品牌,增强师生校园文化认同,提升校园文化育人功能。坚持正确舆论导向,强化宣传阵地建设,着力讲好新时代育人故事,传播育人正能量。丰富师生文体活动供给,提高文化服务质量,以润物细无声的力量实现高度自律和善治目标,以文化赋能学校现代治理体系构建。 (作者:王红兵,系北京财贸职业学院党委书记)

    加载更多...